diff options
Diffstat (limited to 'Introduction_To_Nuclear_And_Particle_Physics_by_V_K_Mittal/3-Radioactivity.ipynb')
-rw-r--r-- | Introduction_To_Nuclear_And_Particle_Physics_by_V_K_Mittal/3-Radioactivity.ipynb | 884 |
1 files changed, 884 insertions, 0 deletions
diff --git a/Introduction_To_Nuclear_And_Particle_Physics_by_V_K_Mittal/3-Radioactivity.ipynb b/Introduction_To_Nuclear_And_Particle_Physics_by_V_K_Mittal/3-Radioactivity.ipynb new file mode 100644 index 0000000..5d0e7bc --- /dev/null +++ b/Introduction_To_Nuclear_And_Particle_Physics_by_V_K_Mittal/3-Radioactivity.ipynb @@ -0,0 +1,884 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Radioactivity" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_10: Power_in_radioactive_decay.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.10 : To calculate the power produced by 10 mg of Po-210 : Page no. 130 (2011)\n", +"N = 2.87e+019; // Number of atoms in 10e-10kg of Po-210\n", +"t_h = 138*24*3600; // Half life of Po-210, s\n", +"D = 0.693/t_h; // Decay constant, s^-1\n", +"A = N*D; // Activity of K-40, dps\n", +"E = 5.3*1.6e-013; // Power produce by one dps, MeV\n", +"P = A*E; // Power produced by 1.667e+012 dps, W\n", +"printf('\nThe Power produced by 1.667e+012 dps : %3.1f W', P)\n", +"// Result\n", +"// The Power produced by 1.667e+012 dps : 1.4 W " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_1: Curie_becquerel_relatio.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.1: To determine how many curie in 10^10 Bq : Page 124 (2011)\n", +"Bq = 1/3.7e+010; // Number of curie in one Bq, Ci\n", +"N = 10^10*Bq; // The number of curie in 10^10 Bq, Ci\n", +"printf('\nThe number of curie in 10^10 Bq : %4.2f Ci', N)\n", +"// Result\n", +"// The number of curie in 10^10 Bq : 0.27 Ci\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_2: Activity_of_thorium.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.2: To calculate the activity of 10g of Th-232 : Page 125 (2011)\n", +"lambda_232 = 1.58e-018; // Decay constant, s^-1\n", +"N = 2.596e+022; // Number of atoms in 10g Th-232\n", +"A = N*lambda_232; // The activity of 10g of Th-232, dps\n", +"printf('\nThe activty of 10g of Th-232 : %5.3e dps', A)\n", +"// Result\n", +"// The activty of 10g of Th-232 : 4.102e+004 dps" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_3: Mass_of_radiactive_sample.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.3: Calculation of mass of 1 Ci sample of radioactive sample : Page 125 (2011)\n", +"A = 3.7e+010; // Activity of 1Ci sample, dps\n", +"t = 1608; // Half life of radioactive substance, s\n", +"N = 6.023e+023/214; // Number of atoms in 1g of substance having atomic mass 214\n", +"lambda = 0.6931/t; // Decay constant, s^-1\n", +"m = A/(lambda*N); // The mass of radoiactive substance, g\n", +"printf('\nThe mass of radioactive substance : %4.2e g', m)\n", +"// Result\n", +"// The mass of radioactive substance : 3.05e-008 g " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_4: Activity_of_1_kg_of_uranium.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.4: To calculate the activity of 1kg of U-238: Page 125 (2011)\n", +"t = 1.419e+017; // Half life of U-238, s\n", +"N = 6.023e+023/238; // Number of atoms in 1g of U-238\n", +"lambda = 0.6931/t; // Decay constant, s^-1\n", +"A = (lambda*N)*1000/(3.7e+010); // The activity of 1kg of U-238, Ci\n", +"printf('\nThe activity of 1kg of U-238 : %4.2e Ci', A)\n", +"// Result\n", +"// The activity of 1kg of U-238 : 3.34e-004 Ci" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_6: Half_life_of_radioactive_material.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.6 Determination of half life of radioactive material Page 127 (2011)\n", +"t = 10; // Total period of radioactive material, days\n", +"lambda = log(6.6667)/10; //Decay constant, day^-1\n", +"t_h = 0.6931/(lambda); // Half life of radioactive substance, days\n", +"printf('\nThe half life of radioactive substance : %4.2f days', t_h)\n", +"// Result\n", +"// The half life of radioactive substance : 3.65 days\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_7: Mass_of_Ra_226.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.7 : To calculate the mass of Ra-226 :Page no. 127 (2011)\n", +"t_h = 1620*31536000; // Half life of Ra-226, S\n", +"D = 0.6931/t_h; // Decay constant, S^-1\n", +"A_Ci = 3.7e+010; // Activity, Ci\n", +"N_Ci = A_Ci/D; // Number of atoms decayed\n", +"m = 0.226; // Mass of 6.023e+023 atoms, kg\n", +"M_Ci = m*N_Ci/6.023e+023; // Mass of 1-Ci sample of Ra-226, kg\n", +"A_rf = 10^6; // Activity, Rf\n", +"N_rf = A_rf/D; // Number of atoms decayed\n", +"M_rf = m*N_rf/6.023e+023; // Mass of 1-Rf sample of Ra-226, kg\n", +"printf('\n Mass of 1-Ci sample of Ra-226 = %5.3e kg and \n Mass of 1-Rf sample of Ra-226 = %4.2e kg ',M_Ci, M_rf )\n", +"// Result\n", +"// Mass of 1-Ci sample of Ra-226 = 1.023e-003 kg and \n", +"// Mass of 1-Rf sample of Ra-226 = 2.77e-008 kg\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_8: Activity_and_weight_of_radiactive_material.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.8 To calculate the activity and weight of radioactive material : Page 128 (2011)\n", +"N_o = 7.721e+018; // Number of atoms in 3 mg of U-234\n", +"t_h = 2.5e+05; // Half life of U-234, years\n", +"T = 150000; // Total time, years\n", +"lambda = 0.6931/t_h; // Decay constant, year^-1\n", +"N = N_o*(%e^-(lambda*T)); // Number of atoms left after T years\n", +"m = 234000; // Mass of 6.023e+023 atoms of U-234, mg\n", +"M = m*N/(6.023e+023); // Weight of sample left after t years, \n", +"L = 8.8e-014; // Given decay constant, S^-1\n", +"A = N*L*10^6/(3.7e+010); // Activity, micro Ci\n", +"printf('\nThe weight of sample = %5.3f mg \n Activity = %5.2f micro Ci ', M, A)\n", +"// Result\n", +"// The weight of sample = 1.979 mg \n", +"// Activity = 12.12 micro Ci \n", +" \n", +"\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_9: Activity_of_K_40.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.9 : To calculate the activity of K-40 : Page no. 129 (2011)\n", +"N = 6.324e+020; // Number of atoms in 4.2e-05 kg of K-40\n", +"t_h = 1.31e+09*31536000; // Half life of K-40, s\n", +"D = 0.693/t_h; // Decay constant, s^-1\n", +"A = N*D/(3.7e+010)*10^6; // Activity of K-40, microCi\n", +"printf('\nThe activity of K-40 : %5.3f micro Ci', A )\n", +"// Result\n", +"// The activity of K-40 : 0.287 micro Ci \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_1: Emitted_particles_during_nuclear_disintegration.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.3.1 : Finding particles in the given reactions : page no. 131 (2011)\n", +"// Declare three cells (for three reactions)\n", +"R1 = cell(4,3);\n", +"R2 = cell(4,3);\n", +"R3 = cell(3,3);\n", +"// Enter data for first cell (Reaction)\n", +"R1(1,1).entries = 'Pb';\n", +"R1(1,2).entries = 82;\n", +"R1(1,3).entries = 211;\n", +"R1(2,1).entries = 'Bi';\n", +"R1(2,2).entries = 83;\n", +"R1(2,3).entries = 211;\n", +"R1(3,1).entries = 'Tl';\n", +"R1(3,2).entries = 81;\n", +"R1(3,3).entries = 207;\n", +"R1(4,1).entries = 'Pb';\n", +"R1(4,2).entries = 82;\n", +"R1(4,3).entries = 207;\n", +"// Enter data for second cell (Reaction)\n", +"R2(1,1).entries = 'U';\n", +"R2(1,2).entries = 92;\n", +"R2(1,3).entries = 238;\n", +"R2(2,1).entries = 'Th';\n", +"R2(2,2).entries = 90;\n", +"R2(2,3).entries = 234;\n", +"R2(3,1).entries = 'Pa';\n", +"R2(3,2).entries = 91;\n", +"R2(3,3).entries = 234;\n", +"R2(4,1).entries = 'U';\n", +"R2(4,2).entries = 92;\n", +"R2(4,3).entries = 234;\n", +"// Enter data for third cell (Reaction)\n", +"R3(1,1).entries = 'Bi';\n", +"R3(1,2).entries = 83;\n", +"R3(1,3).entries = 211;\n", +"R3(2,1).entries = 'Pa';\n", +"R3(2,2).entries = 84;\n", +"R3(2,3).entries = 211;\n", +"R3(3,1).entries = 'Pb';\n", +"R3(3,2).entries = 82;\n", +"R3(3,3).entries = 207;\n", +"// Declare a function returning the type of particle emitted\n", +"function particle = identify_particle(d_Z, d_A)\n", +" if d_Z == 2 & d_A == 4 then \n", +" particle = 'Alpha';\n", +" elseif d_Z == -1 & d_A == 0 then\n", +" particle = 'Beta minus';\n", +" elseif d_Z == 1 & d_A == 0 then\n", +" particle = 'Beta plus';\n", +" end\n", +"endfunction\n", +"// Display emitted particles for first reaction\n", +"printf('\n\n\nReaction-I:');\n", +"for i = 1:1:3\n", +" dZ = R1(i,2).entries-R1(i+1,2).entries;\n", +" dA = R1(i,3).entries-R1(i+1,3).entries;\n", +" p = identify_particle(dZ,dA);\n", +" printf('\n%s(%d) - (%s) --> %s(%d)', R1(i,1).entries, R1(i,2).entries, p, R1(i+1,1).entries, R1(i+1,2).entries); \n", +"end\n", +"// Display emitted particles for second reaction\n", +"printf('\n\n\nReaction-II:');\n", +"for i = 1:1:3\n", +" dZ = R2(i,2).entries-R2(i+1,2).entries;\n", +" dA = R2(i,3).entries-R2(i+1,3).entries;\n", +" p = identify_particle(dZ,dA);\n", +" printf('\n%s(%d) - (%s) --> %s(%d)', R2(i,1).entries, R2(i,2).entries, p, R2(i+1,1).entries, R2(i+1,2).entries); \n", +"end\n", +"// Display emitted particles for third reaction\n", +"printf('\n\n\nReaction-III:');\n", +"for i = 1:1:2\n", +" dZ = R3(i,2).entries-R3(i+1,2).entries;\n", +" dA = R3(i,3).entries-R3(i+1,3).entries;\n", +" p = identify_particle(dZ,dA);\n", +" printf('\n%s(%d) - (%s) --> %s(%d)', R3(i,1).entries, R3(i,2).entries, p, R3(i+1,1).entries, R3(i+1,2).entries); \n", +"end\n", +"// Result\n", +"//\n", +"// Reaction-I:\n", +"// Pb(82) - (Beta minus) --> Bi(83)\n", +"// Bi(83) - (Alpha) --> Tl(81)\n", +"// Tl(81) - (Beta minus) --> Pb(82)\n", +"// Reaction-II:\n", +"// U(92) - (Alpha) --> Th(90)\n", +"// Th(90) - (Beta minus) --> Pa(91)\n", +"// Pa(91) - (Beta minus) --> U(92)\n", +"// Reaction-III:\n", +"// Bi(83) - (Beta minus) --> Pa(84)\n", +"// Pa(84) - (Alpha) --> Pb(82)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_2: Energy_of_Pb_decay.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.3.2 To calculate mass number of Pb isotope and energy emitted : Page no : 132 (2011)\n", +"M_U = 238.050786; // Atomic mass of U-238, amu\n", +"M_Pb = 205.9744550; // Atomic mass of Pb-205, amu\n", +"M_He = 4.002603; // Atomic mass of He-4, amu\n", +"M_e = 5.486e-04; // Atomic mass of electron, amu\n", +"M = M_Pb+(8*M_He)+(6*M_e); // Total mass of products, amu\n", +"D = M_U-M; // Decrease in mass, amu\n", +"E = D*931.47; // Energy evolved, MeV\n", +"printf('\nTotal mass of products = %1.7f amu \n Decrease in mass = %9.7f amu and \n Energy evolved = %4.1f MeV', M, D, E)\n", +"// Result\n", +"// Total mass of products = 237.9985706 amu \n", +"// Decrease in mass = 0.0522154 amu and \n", +"// Energy evolved = 48.6 MeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_1: Atomic_and_mass_numbers_of_daughter_nuclei.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Finding atomic No. and mass No. of daughter nuclei in the given reactions : Page No. 133(2011)\n", +"// Declare cell (for given reaction)\n", +"R1 = cell(5,4);\n", +"// Enter data for cell (Reaction-I)\n", +"R1(1,1).entries = 'A';\n", +"R1(1,2).entries = 90;\n", +"R1(1,3).entries = 238;\n", +"R1(1,4).entries = 'Alpha';\n", +"R1(2,1).entries = 'B';\n", +"R1(2,4).entries = 'Beta minus';\n", +"R1(3,1).entries = 'C';\n", +"R1(3,4).entries = 'Alpha';\n", +"R1(4,1).entries = 'D';\n", +"R1(4,4).entries = 'Beta minus';\n", +"R1(5,1).entries = 'E'; \n", +"// Declare a function returning the type of particle emitted\n", +"function [Z, A] = daughter_nucleus(particle_emitted)\n", +" if particle_emitted == 'Alpha' then \n", +" Z = 2, A = 4;\n", +" elseif particle_emitted == 'Beta minus' then \n", +" Z = -1, A = 0; \n", +" elseif particle_emitted == 'Beta plus' then \n", +" Z = 1, A = 0;\n", +" end\n", +"endfunction\n", +"// Display emitted particles for first reaction\n", +"printf('\n\n\nReaction-I:');\n", +"for i = 1:1:4\n", +" [Z, A] = daughter_nucleus(R1(i,4).entries);\n", +" R1(i+1,2).entries = R1(i,2).entries-Z;\n", +" R1(i+1,3).entries = R1(i,3).entries-A; \n", +" printf('\n%s(%d,%d) - (%s) --> %s(%d,%d)', R1(i,1).entries, R1(i,2).entries, R1(i,3).entries, R1(i,4).entries, R1(i+1,1).entries, R1(i+1,2).entries, R1(i+1,3).entries)\n", +" ; \n", +"end\n", +"// Result \n", +"// \n", +"// Reaction-I:\n", +"// A(90,238) - (Alpha) --> B(88,234)\n", +"// B(88,234) - (Beta minus) --> C(89,234)\n", +"// (89,234) - (Alpha) --> D(87,230)\n", +"// D(87,230) - (Beta minus) --> E(88,230) " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_2: Number_of_half_lives_of_Rn_222.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.4.2 : To determine the number of Rn-222 half lives elapsed when it reaches 99% of its equilibrium concentration : Page no. 133 : (2011)\n", +" D = log(2); // Decay constant, s^-1\n", +" t = log(100); // Half life, s\n", +" n = t/D; // Number of half-lives \n", +"printf('\n Number of half-lives : %4.2f ', n)\n", +"// Result\n", +"// Number of half-lives : 6.64" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_3: Decay_constant_for_alpha_and_beta_decays.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.4.3 : To calculate the decay constant for alpha and beta decays : Page no. 133 : (2011)\n", +" H_t = 60.5*60; // Total half life period, s\n", +" T_d = 0.693/H_t; // Total decay constant, s^-1\n", +" A_d = 34/100*T_d; // Decay constant for alpha decays, s^-1\n", +" B_d = 66/100*T_d; // Decay constant for beta decay, s^-1\n", +"printf('\n Alpha decay = %4.2e s^-1 \n Beta decay = %4.2e s^-1', A_d, B_d)\n", +"// Result\n", +"// Alpha decay = 6.49e-005 s^-1 \n", +"// Beta decay = 1.26e-004 s^-1 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_4: Half_life_of_uranium_234.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.4.4 : To calculate the half life of U(92,234): Page no. 134 : (2011)\n", +"A_r = 1.8e+04; // Atomic ratio of U(92,238) and U(92,234)\n", +"T_238 = 2.5e+05; // Half life of U(92,238), years\n", +"T_234 = A_r*T_238; // Half life of U(92,234), years\n", +"printf('\n Half life of U(92,234): %3.1e years', T_234)\n", +"// Result\n", +"// Half life of U(92,234): 4.5e+009 years" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_5: Decayed_amount_of_radioactive_matter.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa3.2.5 To calculate the mass of decayed radioactive material: Page 126 (2011)\n", +"t_h = 1600; // Half life of radioactive material, years\n", +"t = 2000; // Totaltime, years\n", +"lambda = 0.6931/t_h; // Decay constant, years^-1\n", +"m0 = 1; // The mass of radioactive substance at t0, mg\n", +"m = m0* %e^(-(lambda*t)); // Ratio of total number of atoms and number of atoms disintegrat, mg\n", +"A = 1-m; // The amount of radioactive substance decayed, mg\n", +"printf('\nThe amount of radioactive substance decayed : %6.4f mg',A)\n", +"// Result\n", +"// The amount of radioactive substance decayed : 0.5795 mg" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5_2: Kinetic_energy_of_alpha_particle.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.5.2 : To calculate the K.E. of alpha particle in following decay Pu-239 to U-235+He-4\n", +"M_239 = 239.052158; // Atomic mass of Pu-239, amu\n", +"M_235 = 235.043925; // Atomic mass of U-235, amu\n", +"M_4 = 4.002603; // Atomic mass of He-4, amu\n", +"Q = (M_239-M_235-M_4)*931.47; // Difference in masses, MeV\n", +"A = 241; // Mass number \n", +"K_alpha = Q*(A-4)/A; // Kinetic energy of alpha particle, MeV\n", +"printf('\nKinetic energy of alpha particle %5.2f MeV', K_alpha)\n", +"// Result\n", +"// Kinetic energy of alpha particle 5.16 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5_3: Height_of_barrier_faced_by_alpha_particle.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.5.3 : To calculate the height of barrier faced by alpha particle of Ra-226 : Page no. : 136 (2011)\n", +"Z = 88; // Atomic number of Ra-226 nucleus, \n", +"A = 226; // Atomic mass of Ra-226 nucleus\n", +"R_0 = 1.3e-015; // Distance of closest approach, m\n", +"E_0 = 8.854e-012; // Permittivity of free space, C^2/Nm^2\n", +"e = 1.6e-019; // Charge of an electron, C\n", +"B = 2/(1.6e-013)*(Z-2)*e^2/(4*%pi*E_0*R_0*A^(1/3)); // The barrier height faced by alpha particle, MeV\n", +"printf('\nThe barrier height faced by alpha particle : %4.1f MeV', B)\n", +"// Result\n", +"// The barrier height faced by alpha particle : 31.2 MeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5_4: Height_of_coulomb_barrier.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.5.4 : To calculate the height of coulomb barrier faced by alpha particle : Page no. : 136 (2011)\n", +"Z_1 = 2; //Atomic number of He-4, \n", +"Z_2 = 7; // Atomic number of N-14,\n", +"A_1 = 4; // Atomis mass of He-4 nucleus \n", +"A_2 = 14; // Atomic mass of N-14 nucleus\n", +"R_0 = 1.5e-015; // Distance of closest approach, m\n", +"E_0 = 8.854e-012; // Permittivity of free space, C^2/Nm^2\n", +"e = 1.6e-019; // Charge of an electron, C\n", +"B = Z_1/(1.6e-013)*Z_2*e^2/(4*%pi*E_0*R_0*(A_1^(1/3)+A_2^(1/3))); // The coulomb barrier faced by alpha particle, MeV\n", +"printf('\nThe coulomb barrier faced by alpha particle : %4.2f MeV', B)\n", +"// Result\n", +"// The coulomb barrier faced by alpha particle : 3.36 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5_5: KE_of_a_proton_to_penetrate_the_barrier.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.5.5 : To calculate the K.E. of a proton to penetrate the barrier of H nucleus : Page no. : 137 (2011)\n", +"R_0 = 1.2; // Distance of closest approach, m\n", +"E_b = 197/(R_0*137); // The K.E. of proton to penetrate the berrier of H nucleus, Mev\n", +"printf('\nThe K.E. of proton to penetrate the berrier of H nucleus : %3.1f MeV', E_b)\n", +"// Result\n", +"// The K.E. of proton to penetrate the berrier of H nucleus : 1.2 MeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6_1: Mass_of_daughter_nucleus.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa 3.6.1 : To determine the mass of daughter nucleus for given reaction : Page no. 138 : (2011)\n", +" M_C = 14.007685; // Mass of C-14 nucleus, amu\n", +" E_e = 0.156/931.47; // Kinetic energy of emitted electron, amu\n", +" M_N = M_C-E_e; // Mass of N-14 nucleus, amu\n", +"printf('\n Mass of N-14 nucleus : %9.6f amu', M_N)\n", +"// Result\n", +"// Mass of N-14 nucleus : 14.007518 amu" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6_3: Number_of_proton_decayed_per_year_from_water.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa. 3.6.3 : To determine the number of proton decayed per year from H2O in a reservior : Page no. 139 : (2011)\n", +"N_p = 6.70e+033;// Number of protons \n", +"T_p = 10^32; // Mean life of proton, years\n", +"D_p = N_p/T_p*0.5; // Number of proton decays per year, decays/year \n", +"printf('\n Number of proton decays per year,: %4.1f decays/year', D_p)\n", +"// Result\n", +"// Number of proton decayed per year: 33.5 decays/year" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7_1: Energy_of_gamma_photons_from_excited_Ni_60.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa. 3.7.1 : To determine the energies of two gamma rays emitted during de-excitation of Ni-60: Page no. 141 : (2011)\n", +"E_2 = 2505; // Second excited state of Ni-60, KeV\n", +"E_1 = 1332; // First excited state of Ni-60, KeV\n", +"E_0 = 0; // Ground state of Ni-60 , KeV\n", +"E_G_2 = E_2-E_1; // Energy of gamma rays emitted when transition from 2 to 1, KeV\n", +"E_G_1 = E_1-E_0; // Energy of gamma rays emitted when transition from 1 to 0, KeV\n", +"printf('\n Energies of two gamma rays emitted : %d KeV and %d KeV', E_G_2, E_G_1)\n", +"// Result\n", +"// Energy of two gamma rays emitted : 1173 KeV and 1332 KeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7_2: Conversion_energies_for_K_and_L_shell_electrons.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa. 3.7.2 : To determine the energies conversion for K and L-shell electrons for reaction Cs(55,137) = Ba(56,137)+e(-1,0): Page no. 141 : (2011)\n", +"E = 662; // Energy available with the nucleus, KeV\n", +"I_b_K = 37.4; // Binding energy for K-shell, KeV\n", +"I_b_L = 6.0; // Binding energy for L-shell, KeV\n", +"E_c_K = E-I_b_K; // Energy conversion for K-shell, KeV\n", +"E_c_L = E-I_b_L; // Energy conversion for L-shell, KeV\n", +"printf('\n Energies conversion for K and L-shell electrons : %5.1f KeV and %d KeV', E_c_K, E_c_L)\n", +"// Result\n", +"// Energies conversion for K and L-shell electrons : 624.6 KeV and 656 KeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9_1: Age_of_uranium_mineral.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa. 3.9.1 : To calculate the age of uranium mineral: Page no. 143 : (2011)\n", +"t_h = 4.5e+09; // Half life of mineral, years\n", +"D_c = 0.6931/t_h; // Decay constant of minerals, years^-1\n", +"N_1 = 6.023e+023/238; // Number of nuclei in 1g of Uranium\n", +"N = 6.023e+023*0.093/206; // Number of nuclei in 0.093g of lead\n", +"t = log(1+N/N_1)/D_c; // Age of the mineral, years\n", +"printf('\n Age of the mineral : %6.4e years ', t)\n", +"// Result\n", +"// Age of the mineral : 6.6261e+008 years" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9_2: Age_of_boat_from_its_half_life.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa. 3.9.2 : To determine the age of boat whose half life is given : Page no. 145 : (2011)\n", +"t_h = 5760; // Half life of boat, years\n", +"D_c = 0.6931/t_h; // Decay constant of boat, years^-1\n", +"N_1 = 16; // Number of atoms decay per min. per gram initially \n", +"N = 5; // Number of atoms decay per min per gram presently\n", +"t = log(N_1/N)*1/D_c; // Age of the boat, years\n", +"printf('\n Age of the boat : %d years ', t)\n", +"// Result\n", +"// Age of the boat : 9666 years " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9_4: radioactive_disintegration_of_Pu_239.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa. 3.9.4 : To calculate the number of nuclei at t = 0, initial activity and age of Pu-239 which emit alpha particle : Page no. 145 : (2011)\n", +"t_h = 24000*365*24*3600; // Half life of Pu-239, s\n", +"D_c = 0.6931/t_h; // Decay constant of Pu-239, s^-1\n", +"N = 6.023e+023*10/239; // Number of nuclei at t = 0, nuclei \n", +"A_0 = D_c*N; // Initial activity, disintegrations/sec\n", +"A = 0.1; // Activity after time t, disintegrations/sec\n", +"t = log(A_0/A)*1/D_c; // Age of the Pu-239, years\n", +"printf('\nThe number of nuclei at t = 0, = %4.2e nuclei \nInitial activity = %4.2e disintegrations/s and \nAge of Pu-239 = %4.2e years ', N, A_0, t)\n", +"// Result\n", +"// The number of nuclei at t = 0, = 2.52e+022 nuclei \n", +"// Initial activity = 2.31e+010 disintegrations/s and \n", +"// Age of Pu-239 = 2.86e+013 years" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |