diff options
Diffstat (limited to 'Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/9-Solution_Thermodynamics_Properties.ipynb')
-rw-r--r-- | Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/9-Solution_Thermodynamics_Properties.ipynb | 897 |
1 files changed, 897 insertions, 0 deletions
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/9-Solution_Thermodynamics_Properties.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/9-Solution_Thermodynamics_Properties.ipynb new file mode 100644 index 0000000..56d886a --- /dev/null +++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/9-Solution_Thermodynamics_Properties.ipynb @@ -0,0 +1,897 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Solution Thermodynamics Properties" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10: Fugacity_of_Component_in_Mixture.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.10\n", +"// Page: 354\n", +"\n", +"printf('Example: 9.10 - Page: 354\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"x1 = 0.3;// [mole fraction of component 1 in the mixture]\n", +"x2 = 0.7;// [mole fraction of component 2 in the mixture]\n", +"phi1 = 0.7;// [fugacity coeffecient of component 1 in the mixture]\n", +"phi2 = 0.85;// [fugacity coeffecient of component 2 in the mixture]\n", +"P = 50;// [bar]\n", +"T = 273 + 100;// [K]\n", +"//*************//\n", +"\n", +"phi = exp(x1*log(phi1) + x2*log(phi2));// [fugacity coeffecient of the mixture]\n", +"f = phi*P;// [bar]\n", +"printf('Fugacity of the gaseous mixture is %.3f bar',f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11: Fugacity_of_Component_in_Mixture.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.11\n", +"// Page: 354\n", +"\n", +"printf('Example: 9.11 - Page: 354\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"x1 = 0.3;// [mole fraction of hydrogen in the mixture]\n", +"x2 = 0.25;// [mole fraction of nitrogen in the mixture]\n", +"x3 = 0.45;// [mole fraction of oxygen in the mixture]\n", +"phi1 = 0.7;// [fugacity coeffecient of oxygen in the mixture]\n", +"phi2 = 0.85;// [fugacity coeffecient of nitrogen in the mixture]\n", +"phi3 = 0.75;// [fugacity coeffecient of oxygen in the mixture]\n", +"P = 60;// [bar]\n", +"T = 273 + 150;// [K]\n", +"//***********//\n", +"\n", +"phi = exp(x1*log(phi1) + x2*log(phi2) + x3*log(phi3));// [fugacity coeffecient of the mixture]\n", +"f = phi*P;// [bar]\n", +"printf('Fugacity of the gaseous mixture is %.3f bar',f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.12: Fugacity_of_Solids_and_Liquids.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.12\n", +"// Page: 356\n", +"\n", +"printf('Example: 9.12 - Page: 356\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"T = 372.12;// [K]\n", +"Psat = 100;// [kPa]\n", +"P = 300; //[kPa]\n", +"Vspecific = 1.043*10^(-3);//[cubic m/kg]\n", +"M = 18*10^(-3);// [molecular weight of water, kg/mol]\n", +"R = 8.314;// [J/mol K]\n", +"//***************//\n", +"\n", +"Psat = Psat/100;// [bar]\n", +"P = P/100;// [bar]\n", +"Vl = Vspecific*M;// [cubic m/mol]\n", +"// Vapour is assumed to be like an ideal gas.\n", +"phi = 1;\n", +"fsat = Psat*phi;// [bar]\n", +"fl = fsat*exp(Vl*(P - Psat)*10^5/(R*T));// [bar]\n", +"printf('Fugacity of liquid water is %.4f bar',fl);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.13: Fugacity_of_Solids_and_Liquids.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.13\n", +"// Page: 357\n", +"\n", +"printf('Example: 9.13 - Page: 357\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"Vl = 90.45*10^(-6);// [molar volume of liquid butadiene, cubic m/mol]\n", +"fsat = 4.12;// [bar]\n", +"P = 10;// [bar]\n", +"Psat = 4.12;// [bar]\n", +"T = 313;// [K]\n", +"R = 8.314;// [J/mol K]\n", +"//************//\n", +"\n", +"fl = fsat*exp(Vl*(P - Psat)*10^5/(R*T));// [bar]\n", +"printf('The fugacity of the liquid water is %.4f bar',fl);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.14: Fugacity_of_Solids_and_Liquids.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.14\n", +"// Page: 357\n", +"\n", +"printf('Example: 9.14 - Page: 357\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"b = 0.0391;// [cubic dm/mol]\n", +"P1 = 1000;// [atm]\n", +"T = 1000 + 273;// [K]\n", +"R = 0.0892;// [L bar/K mol]\n", +"deff('[Vreal] = f1(P)','Vreal = R*T/P + b');\n", +"deff('[Videal] = f2(P)','Videal = R*T/P');\n", +"//**************//\n", +"\n", +"// We know that:\n", +"// RTlog(f/P) = integral('Vreal - Videal',P,0,P)\n", +"f = P1*exp((1/(R*T))*integrate('f1(P) - f2(P)','P',0,P1));// [atm]\n", +"phi = f/P1;\n", +"printf('The fugacity of the gas is %d atm \n',f);\n", +"printf('The fugacity coeffecient of the gas is %.3f atm',phi);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.15: Fugacity_of_Solids_and_Liquids.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.15\n", +"// Page: 359\n", +"\n", +"printf('Example: 9.15 - Page: 359\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"Vl = 73*10^(-6);// [cubic m/mol]\n", +"P = 275;// [bar]\n", +"Psat = 4.360;// [bar]\n", +"T = 110 + 273;// [K]\n", +"R = 8.314;// [J/mol K]\n", +"//**************//\n", +"\n", +"// Acetone vapour is assumed to behave like ideal gas.\n", +"phi = 1;\n", +"fsat = Psat;// [bar]\n", +"fl = fsat*exp(Vl*(P - Psat)*10^5/(R*T));// [bar]\n", +"printf('Fugacity of liquid butadiene at 313 K & 10 bar is %.3f bar',fl); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.16: Gibbs_Theorem.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.16\n", +"// Page: 362\n", +"\n", +"printf('Example: 9.16 - Page: 362\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"V1 = 2.8;// [Volume of Oxygen, L]\n", +"V2 = 19.6;// [Volume of hydrogen, L]\n", +"R = 1.987;// [cal/K mol]\n", +"//**************//\n", +"\n", +"n1 = V1/22.4;// [moles of Oxygen]\n", +"n2 = V2/22.4;// [moles of Hydrogen]\n", +"n = n1 + n2;// [total number of moles]\n", +"x1 = n1/n;// [mole fraction of Oxygen]\n", +"x2 = n2/n;// [mole fraction of Hydrogen]\n", +"// From Eqn. 9.88:\n", +"deltaS_mix = - (R*(x1*log(x1) + x2*log(x2)));// [cal/K mol]\n", +"printf('The entropy change of mixiong is %.3f cal/K mol',deltaS_mix)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.17: Gibbs_Theorem.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.17\n", +"// Page: 363\n", +"\n", +"printf('Example: 9.17 - Page: 363\n\n');\n", +"\n", +"// Mathematics is involved in proving but just that no numerical computations are involved.\n", +"// For prove refer to this example 9.17 on page number 363 of the book.\n", +"\n", +"printf(' Mathematics is involved in proving but just that no numerical computations are involved.\n\n');\n", +"printf(' For prove refer to this example 9.17 on page 363 of the book.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.18: Gibbs_Theorem.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.18\n", +"// Page: 364\n", +"\n", +"printf('Example: 9.18 - Page: 364\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"n1 = 0.7;// [moles of helium]\n", +"n2 = 0.3;// [moles of argon]\n", +"R = 8.314;// [J/mol K]\n", +"T = 273 + 25;// [K]\n", +"//******************//\n", +"\n", +"n = n1 + n2;// [total moles]\n", +"x1 = n1/n;// [mole fraction of helium]\n", +"x2 = n2/n;// [mole fraction of argon]\n", +"deltaG_mix = n*R*T*(x1*log(x1) + x2*log(x2));// [J]\n", +"printf('The free energy change of mixing is %.2f J\n',deltaG_mix);\n", +"\n", +"// Since the gases are ideal:\n", +"deltaH_mix = 0;// [J]\n", +"printf('The enthalpy change of mixing is %d J\n',deltaH_mix);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.19: Gibbs_Theorem.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.19\n", +"// Page: 364\n", +"\n", +"printf('Example: 9.19 - Page: 364\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"V = 20;// [Volume of vessel, L]\n", +"V1 = 12;// [Volume of Hydrogen, L]\n", +"V2 = 10;// [Volume of Nitrogen, L]\n", +"P = 1;// [atm]\n", +"T = 298;// [K]\n", +"P1 = 1;// [atm]\n", +"P2 = 1;// [atm]\n", +"R = 0.082;// [L atm/K mol]\n", +"//************//\n", +"\n", +"n1 = P1*V1/(R*T);// [number of moles of Hydrogen]\n", +"n2 = P2*V2/(R*T);// [number of moles of Nitrogen]\n", +"n = n1 + n2;// [total number of moles]\n", +"Pfinal = n*R*T/V;// [atm]\n", +"p1 = Pfinal*n1;// [partial pressure of Hydrogen, atm]\n", +"p2 = Pfinal*n2;// [partial pressure of Nitrogen, atm]\n", +"deltaG_mix = R*T*(n1*log(p1/P1) + n2*log(p2/P2));// [J]\n", +"printf('Free Energy change of mixing is %.2f J\n',deltaG_mix);\n", +"\n", +"// Since mixing is ideal:\n", +"deltaH_mix = 0;// [J]\n", +"printf('Enthalpy change in mixing is %.2f J\n',deltaH_mix);\n", +"\n", +"deltaS_mix = - (deltaG_mix/T);// [J/K]\n", +"printf('Entropy Change in mixing is %.3f J/K\n',deltaS_mix);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Partial_Molar_Properties.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.1\n", +"// Page: 338\n", +"\n", +"printf('Example: 9.1 - Page: 338\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"V1_bar = 52.37*10^(-6);// [partial molar volume of ethanol, cubic m/mol]\n", +"y1 = 0.5;// [mole fraction of ethanol]\n", +"Density = 800.21;// [kg/cubic m]\n", +"M1 = 46*10^(-3);// //[Molecular wt. of ethanol,kg/mol]\n", +"M2 = 18*10^(-3);// [Molecular wt. of water,kg/cmol]\n", +"//*************//\n", +"\n", +"y2 = 1 - y1;// [mole fraction of water]\n", +"M = y1*M1 + y2*M2;// [Molecular wt. of mixture, kg/mol]\n", +"V = M/Density;// [Volume of mixture, cubic m/mol]\n", +"// From Eqn. 9.9:\n", +"V2_bar = (V - y1*V1_bar)/y2;// [partial molar volume of water, cubic m/mol]\n", +"printf('Partial molar volume of water is %.2e cubic m/mol\n',V2_bar);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.20: Excess_Property_Of_Mixture.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.20\n", +"// Page: 367\n", +"\n", +"printf('Example: 9.20 - Page: 367\n\n');\n", +"\n", +"// Mathematics is involved in proving but just that no numerical computations are involved.\n", +"// For prove refer to this example 9.20 on page number 367 of the book.\n", +"\n", +"printf(' Mathematics is involved in proving but just that no numerical computations are involved.\n\n');\n", +"printf(' For prove refer to this example 9.20 on page 367 of the book.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.21: Henry_Law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.21\n", +"// Page: 373\n", +"\n", +"printf('Example: 9.21 - Page: 373\n\n');\n", +"\n", +"// Mathematics is involved in proving but just that no numerical computations are involved.\n", +"// For prove refer to this example 9.21 on page number 373 of the book.\n", +"\n", +"printf(' Mathematics is involved in proving but just that no numerical computations are involved.\n\n');\n", +"printf(' For prove refer to this example 9.21 on page 373 of the book.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Partial_Molar_Properties.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.2\n", +"// Page: 338\n", +"\n", +"printf('Example: 9.2 - Page: 338\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"Vol = 2;// [Volume of the mixture, cubic m/mol]\n", +"y1 = 0.4;// [mole fraction of alcohol, cubic m/mol]\n", +"V1_bar = 38.3*10^(-6);// [partial molar volume of alcohol, cubic m/mol]\n", +"V2_bar = 17.2*10^(-6);// [partial molar volume of water, cubic m/mol]\n", +"V1 = 39.21*10^(-6);// [molar volume of alcohol, cubic m/mol]\n", +"V2 = 18*10^(-6);// [molar volume of water, cubic m/mol]\n", +"//*************//\n", +"\n", +"// From Eqn. 9.9:\n", +"V = y1*V1_bar + (1 - y1)*V2_bar;// [molar volume of the solution]\n", +"n = Vol/V;// [number of moles of solution]\n", +"n1 = y1*n;// [number of moles of alcohol required]\n", +"n2 = (1 - y1)*n;// [number of moles of water required]\n", +"V_alcohol = V1*n1;// [Volume of alcohol required, cubic m]\n", +"V_water = V2*n2;// [Volume of water required, cubic m]\n", +"printf('Volume of alcohol required is %.3f cubic m while volume of water required is %.3f cubic m\n',V_alcohol,V_water);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Partial_Molar_Properties.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.3\n", +"// Page: 339\n", +"\n", +"printf('Example: 9.3 - Page: 339\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"Vol = 2000;// [cubic cm]\n", +"y1_1 = 0.96;// [mass fraction of ethanol in laboratory alcohol]\n", +"y2_1 = 0.04;// [mass fraction of water in laboratory alcohol]\n", +"y1_2 = 0.56;// [mass fracion of ethanol in vodka]\n", +"y2_2 = 0.44;// [mass fraction of water in vodka]\n", +"Vbar_water1 = 0.816;// [cubic cm/g]\n", +"Vbar_ethanol1 = 1.273;// [cubic cm/g]\n", +"Vbar_water2 = 0.953;// [cubic cm/g]\n", +"Vbar_ethanol2 = 1.243;// [cubic cm/g]\n", +"Density_water = 0.997;// [cubic cm/g]\n", +"//***************//\n", +"\n", +"// Solution (i)\n", +"// From Eqn 9.9\n", +"Va = y1_1*Vbar_ethanol1 + y2_1*Vbar_water1;// [Volume of laboratory alcohol, cubic cm/g]\n", +"mass = Vol/Va;// [g]\n", +"// Let Mw be the mass of water added in laboratory alcohol.\n", +"// Material balance on ethanol:\n", +"Mw = mass*y1_1/y1_2 - mass;// [g]\n", +"Vw = Mw/Density_water;// [Volume of water added, cubic cm]\n", +"printf('Mass of water added is %d g\n',Mw);\n", +"\n", +"// Solution (ii)\n", +"Mv = mass + Mw;// [Mass of vodka, g]\n", +"Vv = y1_2*Vbar_ethanol2 + y2_2*Vbar_water2;// [Volume of ethanol, cubic cm/g]\n", +"V_vodka = Vv*Mv;// [Volume of vodka obtained after conversion, cubic cm]\n", +"printf('The volume of vodka obtained after conversion is %.d cubic cm\n',V_vodka);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Partial_Molar_Properties.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.4\n", +"// Page: 339\n", +"\n", +"printf('Example: 9.4 - Page: 339\n\n');\n", +"\n", +"// Mathematics is involved in proving but just that no numerical computations are involved.\n", +"// For prove refer to this example 9.4 on page number 339 of the book.\n", +"\n", +"printf(' Mathematics is involved in proving but just that no numerical computations are involved.\n\n');\n", +"printf(' For prove refer to this example 9.4 on page 339 of the book.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Partial_Molar_Properties.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.5\n", +"// Page: 340\n", +"\n", +"printf('Example: 9.5 - Page: 340\n\n');\n", +"\n", +"// Mathematics is involved in proving but just that no numerical computations are involved.\n", +"// For prove refer to this example 9.5 on page number 340 of the book.\n", +"\n", +"printf(' Mathematics is involved in proving but just that no numerical computations are involved.\n\n');\n", +"printf(' For prove refer to this example 9.5 on page 340 of the book.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Partial_Molar_Properties.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.6\n", +"// Page: 341\n", +"printf('Example - 9.6 and Page number - 341\n\n');\n", +"\n", +"//Given\n", +"T = 25+273.15;// [K]\n", +"P = 1;// [atm]\n", +"// Component 1 = water\n", +"// Component 2 = methanol\n", +"a = -3.2;// [cubic cm/mol] A constant\n", +"V2 = 40.7;// [cubic cm/mol] Molar volume of pure component 2 (methanol)\n", +"// V1_bar = 18.1 + a*x_2^(2)\n", +"\n", +"// From Gibbs-Duhem equation at constant temperature and pressure we have\n", +"// x_1*dV1_bar + x_2*dV2_bar = 0\n", +"// dV2_bar = -(x_1/x_2)*dV1_bar = -(x_1/x_2)*a*2*x_2*dx_2 = -2*a*x_1*dx_2 = 2*a*x_1*dx_1\n", +"\n", +"// At x_1 = 0: x_2 = 1 and thus V2_bar = V2\n", +"// Integrating the above equation from x_1 = 0 to x_1 in the RHS, and from V2_bar = V2 to V2 in the LHS, we get\n", +"// V2_bar = V2 + a*x_1^(2) - Molar volume of component 2(methanol) in the mixture \n", +"\n", +"printf('The expression for the partial molar volume of methanol(2) is\nV2_bar = V2 + a*x_1^(2) [cubic cm/mol]\n\n');\n", +"\n", +"// At infinite dilution, x_2 approach 0 and thus x_1 approach 1, therefore\n", +"x_1 = 1;// Mole fraction of component 1(water) at infinite dilution\n", +"V2_bar_infinite = V2 + a*(x_1^(2));//[cubic cm/mol]\n", +"\n", +"printf('The partial molar volume of methanol at infinite dilution is %.1f cubic cm/mol',V2_bar_infinite);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: Partial_Molar_Properties.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.7\n", +"// Page: 342\n", +"\n", +"printf('Example: 9.7 - Page: 342\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data******//\n", +"// Data = [X1 V*10^6(cubic m/mol)];\n", +"Data = [0 20;0.2 21.5;0.4 24.0;0.6 27.4;0.8 32.0;1 40];\n", +"//************//\n", +"\n", +"scf(1.1);\n", +"plot(Data(:,1),Data(:,2));\n", +"title('Example 9.7');\n", +"xlabel('Mole fraction');\n", +"ylabel('Molar Volume*10^(6)');\n", +"xgrid();\n", +"\n", +"// Solution (i)\n", +"printf('For X1 = 0.5\n');\n", +"// A tangent is drawn to the curve at X1 = 0.5.\n", +"// The intercept at X2 = 0 or X1 = 1, gives V1_bar.\n", +"V1_bar1 = 33.8*10^(-6);// [cubic m/mol]\n", +"// The intercept at X2 = 1 or X1 = 0, gives V2_bar.\n", +"V2_bar1 = 17*10^(-6);// [cubic m/mol]\n", +"printf('Partial molar volume of component 1 is %.2e cubic m/mol\n',V1_bar1);\n", +"printf('Partial molar volume of component 2 is %.2e cubic m/mol\n',V2_bar1);\n", +"printf('\n');\n", +"\n", +"// Solution (ii)\n", +"printf('For X2 = 0.75\n');\n", +"// A tangent is drawn to the curve at X1 = 0.75.\n", +"// The intercept at X2 = 0 or X1 = 1, gives V1_bar.\n", +"V1_bar2 = 36.6*10^(-6);// [cubic m/mol]\n", +"// The intercept at X2 = 1 or X1 = 0, gives V2_bar.\n", +"V2_bar2 = 12.4*10^(-6);// [cubic m/mol]\n", +"point1 = [0 V1_bar1; 1 V2_bar1];\n", +"point2 = [0 V1_bar2;1 V2_bar2];\n", +"scf(2);\n", +"plot(point1(:,1),point1(:,2),point2(:,1),point2(:,2));\n", +"legend('X1 = 0.5','X1 = 0.75');\n", +"xlabel('Mole fraction');\n", +"ylabel('Molar Volume');\n", +"printf('Partial molar volume of component 1 is %.2e cubic m/mol\n',V1_bar);\n", +"printf('Partial molar volume of component 2 is %.2e cubic m/mol\n',V2_bar);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: Gibbs_Duhem_Equatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.8\n", +"// Page: 352\n", +"\n", +"printf('Example: 9.8 - Page: 352\n\n');\n", +"\n", +"// Mathematics is involved in proving but just that no numerical computations are involved.\n", +"// For prove refer to this example 9.8 on page number 352 of the book.\n", +"\n", +"printf(' Mathematics is involved in proving but just that no numerical computations are involved.\n\n');\n", +"printf(' For prove refer to this example 9.8 on page 352 of the book.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: Gibbs_Duhem_Equatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 9.9\n", +"// Page: 352\n", +"\n", +"printf('Example: 9.9 - Page: 352\n\n');\n", +"\n", +"// Mathematics is involved in proving but just that no numerical computations are involved.\n", +"// For prove refer to this example 9.9 on page number 352 of the book.\n", +"\n", +"printf(' Mathematics is involved in proving but just that no numerical computations are involved.\n\n');\n", +"printf(' For prove refer to this example 9.9 on page 352 of the book.');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |