diff options
Diffstat (limited to 'Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/4-Heat_Effects.ipynb')
-rw-r--r-- | Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/4-Heat_Effects.ipynb | 497 |
1 files changed, 497 insertions, 0 deletions
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/4-Heat_Effects.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/4-Heat_Effects.ipynb new file mode 100644 index 0000000..1bcdec4 --- /dev/null +++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G_Halder/4-Heat_Effects.ipynb @@ -0,0 +1,497 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Heat Effects" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Effect_of_Temperature_on_Heat_of_Reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.10\n", +"// Page: 129\n", +"\n", +"printf('Example: 4.10 - Page: 129\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"T2 = 1273;// [K]\n", +"T1 = 300;// [K]\n", +"deltaH_300 = -11030;// [cal/mol]\n", +"//*************//\n", +"\n", +"// The chemical reaction involved is:\n", +"// N2 + 3H2 = 2NH3\n", +"// (1/2)N2 + (3/2)H2 = NH3\n", +"// deltaH_1273 = deltaH_300 + integrate('Cp_NH3(T) - (1/2)*Cp_N2(T) - (1/2)*Cp_H2(T)','T',1273,300);\n", +"deltaH_1273 = deltaH_300 + integrate('(6.2 + 7.8*10^(-3)*T - 7.2*10^(-6)*T^2) - (1/2)*(6.45 + 1.4*10^(-3)*T) - (1/2)*(6.94 - 0.2*10^(-3)*T)','T',1273,300);// [cal]\n", +"printf('Heat of formation at 1273 K is %d cal',deltaH_1273);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Effect_of_Temperature_on_Heat_of_Reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.11\n", +"// Page: 130\n", +"\n", +"printf('Example: 4.11 - Page: 130\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"CO2 = 13.4;// [percent by volume]\n", +"N2 = 80.5;// [percent by volume]\n", +"O2 = 6.1;// [percent by volume]\n", +"//*************//\n", +"\n", +"// Basis : 100 cubic m of flue gas.\n", +"Vol_N2_flue = N2;// [Volume of Nitrogen in flue gas, cubic m]\n", +"Vol_O2_flue = O2;// [Volume of O2 in flue gas, cubic m]\n", +"Vol_Air = N2/0.79;// [Volume of air supplied, cubic m]\n", +"Vol_O2 = Vol_Air*0.21;// [Volume of O2 in air supply, cubic m]\n", +"Vol_O2_cumbustion = Vol_O2 - Vol_O2_flue;// [Volume of O2 used up in cumbustion of the fuel, cubic m]\n", +"Excess_Air = Vol_O2_flue/Vol_O2_cumbustion * 100;// [percent of excess air supplied]\n", +"printf('Percent of excess air supplied is %.1f %%',Excess_Air);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Relation_between_Qp_and_Qv.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.1\n", +"// Page: 118\n", +"\n", +"printf('Example: 4.1 - Page: 118\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"Qp = -327;// [kcal]\n", +"T = 27 + 273;// [K]\n", +"R = 2*10^(-3);// [kcal/K mol]\n", +"//*************//\n", +"\n", +"// The reaction involved is:\n", +"// C2H5OH(l) + 3O2(g) = 2CO2(g) + 3H2O(l)\n", +"deltan = 2 - 3;\n", +"Qv = Qp - deltan*R*T;// [kcal]\n", +"printf('Value of Qv is %.2f kcal\n',Qv);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Standard_Heat_of_Reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.2\n", +"// Page: 119\n", +"\n", +"printf('Example: 4.2 - Page: 119\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"// Mg + (1/2)O2 = MgO ...............(1)\n", +"deltaH1 = -610.01;// [kcal]\n", +"// 2Fe + (3/2)O2 = Fe2O3 ............(2)\n", +"deltaH2 = -810.14;// [kcal]\n", +"//*************//\n", +"\n", +"// 3Mg + Fe2O3 = 3MgO + 2Fe .........(3)\n", +"// Multiplying (1) by 3 and substracting from (2), we get (3):\n", +"deltaH = 3*deltaH1 - deltaH2;// [kcal]\n", +"printf('Heat produced in the reaction is %.1f kcal\n',deltaH);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Standard_Heat_of_Formation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.3\n", +"// Page: 121\n", +"\n", +"printf('Example: 4.3 - Page: 121\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"// 2H2(g) + O2(g) ---------------> 2H2O .....................(1)\n", +"deltaH1 = -241.8*2;// [kJ/gmol H2]\n", +"// C(graphite) + O2(g) =---------> CO2(g) ...................(2)\n", +"deltaH2 = -393.51;// [kJ/gmol C]\n", +"// CH4(g) + 2O2(g) ---------------> CO2(g) + 2H2O(l) ........(3)\n", +"deltaH3 = -802.36;// [kJ/mol CH4]\n", +"//*************//\n", +"\n", +"// For standard heat of formation of methane, (a) + (b) - (c)\n", +"// C + 2H2 ------------------------> CH4\n", +"deltaHf = deltaH1 + deltaH2 - deltaH3;// [kJ/gmol]\n", +"printf('The standard heat of formation of methane is %.2f kJ/gmol\n',deltaHf);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Standard_Heat_of_Formation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.4\n", +"// Page: 122\n", +"\n", +"printf('Example: 4.4 - Page: 122\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"deltaH_C6H12O6 = -1273;// [kcal]\n", +"deltaH_C2H5OH = -277.6;// [kcal]\n", +"deltaH_CO2 = -393.5;// [kcal]\n", +"deltaH_H2O = -285.8;// [kcal]\n", +"//**************//\n", +"\n", +"// C6H12O6(s) = 2C2H5OH(l) + 2CO2(g) ..........................(A)\n", +"deltaH_A = 2*deltaH_C2H5OH + 2*deltaH_CO2 - deltaH_C6H12O6;// [kJ]\n", +"// C6H12O6(s) + 6O2(g) = 6CO2(g) + 6H2O(l) ...................(B)\n", +"deltaH_B = 6*deltaH_CO2 + 6*deltaH_H2O - deltaH_C6H12O6;// [kJ]\n", +"printf('Energy supplied by reaction A is %.1f kJ\n',deltaH_A);\n", +"printf('Energy supplied by reaction B is %.1f kJ\n',deltaH_B);\n", +"if deltaH_A < deltaH_B\n", +" printf('Reaction A supplies more energy to the organism\n');\n", +"else\n", +" printf('Reaction B supplies more energy to the organism\n');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Standard_Heat_of_Formation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.5\n", +"// Page: 122\n", +"\n", +"printf('Example: 4.5 - Page: 122\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"// Zn + S = ZnS ....................................................(A)\n", +"deltaH_A = -44;// [kcal/kmol]\n", +"// ZnS + 3O2 = 2ZnO + 2SO2 .........................................(B)\n", +"deltaH_B = -221.88;// [kcal/kmol]\n", +"// 2SO2 + O2 = 2SO3 ................................................(C)\n", +"deltaH_C = -46.88;// [kcal/kmol]\n", +"// ZnO + SO3 = ZnSO4 ...............................................(D)\n", +"deltaH_D = -55.10;// [kcal/kmol]\n", +"//***************//\n", +"\n", +"// Multiplying (A) by 2 & (D) by (2) and adding (A), (B), (C) & (D)\n", +"// Zn + S + 2O2 = ZnSO4\n", +"deltaH = 2*deltaH_A + deltaH_B + deltaH_C + 2*deltaH_D;// [kcal/kmol for 2 kmol of ZnSO4]\n", +"printf('Heat of formation of ZnSO4 is %.2f kcal/kmol\n',deltaH/2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Standard_Heat_of_Combustion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.6\n", +"// Page: 124\n", +"\n", +"printf('Example: 4.6 - Page: 124\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"// HC : Heat of Combustion\n", +"HC_NH3 = -90.6;// [kcal]\n", +"HC_H2 = -68.3;// [kcal]\n", +"//*************//\n", +"\n", +"// Heat of combustion of NH3:\n", +"// 2NH3 + 3O = N2 + 3H2O ............................ (A)\n", +"// Heat of combustion of H2:\n", +"// H2 + O = H2O ..................................... (B)\n", +"// Multiplying (B) by 3 & substracting from (A), we get:\n", +"// 2NH3 = N2 + 3H2 .................................. (C)\n", +"// Hf : Heat of Formation\n", +"Hf_NH3 = -(2*HC_NH3 - 3*HC_H2)/2;// [kcal]\n", +"printf('Standard Heat of formation of NH3 is %.1f kcal',Hf_NH3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Adiabatic_Flame_Temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.7\n", +"// Page: 125\n", +"\n", +"printf('Example: 4.7 - Page: 125\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"// HC : Heat of Combustion\n", +"HC_C2H2 = -310600; // [cal]\n", +"//**************//\n", +"\n", +"// C2H2 + (5/2)O2 = 2CO2 + H2O\n", +"Q = -HC_C2H2;// [cal]\n", +"// The gases present in the flame zone after combustion are carbon dioxide, water vapor and the unreacted nitrogen of the air.\n", +"// Since (5/2) mole of oxygen were required for combustion, nitrogen required would be 10 mol.\n", +"// Hence the composition of the resultant gas would be 2 mol CO2, 1 ol H2 & 10 mol N2.\n", +"// Q = integrate('Cp(T)','T',T,298);\n", +"// On integrating we get:\n", +"// Q = 84.52*(T - 298) + 18.3*10^(-3)*(T^2 - 298^2)\n", +"deff('[y] = f(T)','y = Q - 84.52*(T - 298) - 18.3*10^(-3)*(T^2 - 298^2)');\n", +"T = fsolve(7,f);// [K]\n", +"printf('The maximum attainable temperature is %.1f K',T);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: Adiabatic_Flame_Temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.8\n", +"// Page: 126\n", +"\n", +"printf('Example: 4.8 - Page: 126\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"Cp_CO2 = 54.56;// [kJ/mol K]\n", +"Cp_O2 = 35.20;// [kJ/mol K]\n", +"Cp_steam = 43.38;// [kJ/mol K]\n", +"Cp_N2 = 33.32;// [kJ/mol K]\n", +"// 2C2H6(g) + 7O2(g) = 4CO2(g) + 6H2O(g)\n", +"deltaH_273 = -1560000;// [kJ/kmol]\n", +"//************//\n", +"\n", +"// Since the air is 25% in excess of the amount required,the combustion may be written as:\n", +"// C2H6(g) + (7/2)O2(g) = 2CO2(g) + 3H2O(g)\n", +"// 25% excess air is supplied.\n", +"// Since the air contains N2 = 79% and O2 = 21%\n", +"// C2H6(g) + 3.5O2(g) + 0.25*3.5O2(g) + (4.375*(79/21))N2 = 2CO2 + 3H2O + 0.875O2 + 16.46N2 .................. (A)\n", +"// Considering the reaction (A),\n", +"// Amount of O2:\n", +"O2 = 3.5 + 3.5*0.25;// [mol]\n", +"// Amount of N2 required:\n", +"N2 = 4.375*(79/21);// [mol]\n", +"// Let the initial temperature of ethane and air be 0 OC and the temperature of products of combustion be T OC\n", +"// Since heat librated by combustion = heat accumulated by combustion products\n", +"Q = -deltaH_273;// [kJ/mol K]\n", +"T = Q/(2*Cp_CO2 + 3*Cp_steam + 0.875*Cp_O2 + N2*Cp_N2);// [OC]\n", +"printf('The theoretical temperature of combustion is %d degree Celsius',T);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Effect_of_Temperature_on_Heat_of_Reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example: 4.9\n", +"// Page: 129\n", +"\n", +"printf('Example: 4.9 - Page: 129\n\n');\n", +"\n", +"// Solution\n", +"\n", +"//*****Data*****//\n", +"T1 = 273;// [K]\n", +"T2 = 253;// [K]\n", +"deltaH_273 = 1440;// [cal/mol]\n", +"Cp = 8.7;// [cal/mol]\n", +"//**************//\n", +"\n", +"deltaH_253 = deltaH_273 + Cp*(T2 - T1);// [cal/mol]\n", +"printf('Laten heat of ice at -20 OC is %d cal/mol\n',deltaH_253);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |