summaryrefslogtreecommitdiff
path: root/Industrial_Instrumentation_by_K_Krishnaswamy_And_S_Vijayachitra/2-Pressure.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Industrial_Instrumentation_by_K_Krishnaswamy_And_S_Vijayachitra/2-Pressure.ipynb')
-rw-r--r--Industrial_Instrumentation_by_K_Krishnaswamy_And_S_Vijayachitra/2-Pressure.ipynb413
1 files changed, 413 insertions, 0 deletions
diff --git a/Industrial_Instrumentation_by_K_Krishnaswamy_And_S_Vijayachitra/2-Pressure.ipynb b/Industrial_Instrumentation_by_K_Krishnaswamy_And_S_Vijayachitra/2-Pressure.ipynb
new file mode 100644
index 0000000..27d84b3
--- /dev/null
+++ b/Industrial_Instrumentation_by_K_Krishnaswamy_And_S_Vijayachitra/2-Pressure.ipynb
@@ -0,0 +1,413 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Pressure"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Capacitance_calculation_for_variable_dielectric.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.10, page no-121\n",
+"clear\n",
+"clc\n",
+"\n",
+"c=0.57\n",
+"\n",
+"//(a)\n",
+"d=0.1\n",
+"di1=100\n",
+"di2=1000\n",
+"c1=c*di1*10/d\n",
+"c1=ceil(c1)\n",
+"printf('(a)\nC1=%d pf',c1)\n",
+"\n",
+"//(b)\n",
+"c2=c*di2*10/d\n",
+"printf('\n(b)\nC2=%d pf',c2)\n",
+"\n",
+"//(c)\n",
+"ds=0.09\n",
+"c11=c*di1*10/ds\n",
+"c12=c*di2*10/ds\n",
+"printf('\n(c)\nC1 = %.1f pf\nC2 = %d pf',c11,c12)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: pressure_gauge_caliberatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.11, page no-121\n",
+"clear\n",
+"clc\n",
+"\n",
+"A=1\n",
+"p1=10\n",
+"W1=A*p1\n",
+"printf('W1 = %d kg',W1)\n",
+"printf('\nWith the 4 standard weights of 10kg, 20kg, 30kg and 40kg ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: pressure_calculation_using_McLeod_gauge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.12, page no-122\n",
+"clear\n",
+"clc\n",
+"\n",
+"p1=10^-2\n",
+"h1=20\n",
+"K=p1/h1^2\n",
+"p2=K*30^2\n",
+"p2=p2*100\n",
+"printf('The unknown pressure p2 = %.2f * 10^-2 torr',p2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Pressure_conversion.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.1, page no-116\n",
+"clear\n",
+"clc\n",
+"\n",
+"//(a)\n",
+"//1kg/cm^2=10000 mmWG\n",
+"x=10000*10\n",
+"printf('(a)\n 10kg/cm^2 = %d mmWG',x)\n",
+"\n",
+"//(b)\n",
+"onemm_Hg=13.546\n",
+"y=10^5/onemm_Hg\n",
+"y=y/10^3\n",
+"printf('\n(b)\n10kg/cm^2 = 10^5 mmWG = %.2f * 10^3 mmHg',y)\n",
+"\n",
+"//(c)\n",
+"onebar=1.03 \n",
+"z=10/onebar\n",
+"printf('\n(c)\n10kg/cm^2 = %.2f bars',z)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Gauge_and_absolute_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.2, page no-116\n",
+"clear\n",
+"clc\n",
+"\n",
+"//(a)\n",
+"gamm=1000\n",
+"d=35\n",
+"dens_Hg=13.546\n",
+"press_in_kg_cm=gamm*d*10^-4\n",
+"press_in_mmHg=gamm*d/dens_Hg\n",
+"press_in_mmHg=press_in_mmHg/10^3\n",
+"printf('(a)\nThe pressure at depth of %d meters in a water tank=%.1f kg/cm^2 = %.2f*10^3 mmHg',d,press_in_kg_cm,press_in_mmHg)\n",
+"\n",
+"//(b)\n",
+"press_atm=1.03\n",
+"abspress=press_in_kg_cm+press_atm\n",
+"abspress_mmHg=press_in_mmHg*1000+760\n",
+"abspress_mmHg=abspress_mmHg/1000\n",
+"printf('\n(b)\nAbsolute Pressure= %.2f kg/cm^2 Abs = %.2f*10^3 mmHg Abs',abspress,abspress_mmHg)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Gauge_and_absolute_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.3, page no-116\n",
+"clear\n",
+"clc\n",
+"\n",
+"egp=260\n",
+"abspress=760-egp\n",
+"printf('Absolute Presssure = %d mmHg',abspress)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: pressure_measurement_using_U_tube_manometer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.4, page no-117\n",
+"clear\n",
+"clc\n",
+"\n",
+"//(a)\n",
+"p_diff=500\n",
+"pdiff=p_diff*13.546/10000\n",
+"printf('(a)\np1-p2 = %.3f kg/cm^2',pdiff)\n",
+"\n",
+"//(b)\n",
+"p1=6770\n",
+"p_atm=10300\n",
+"abs_p1=p1+p_atm\n",
+"printf('\n(b)If p2 is open to atmosphere:\nAbsolute Pressure P1 = %d mmWG abs.',abs_p1)\n",
+"\n",
+"//(c)\n",
+"P1=500\n",
+"P1_gauge=P1-760\n",
+"printf('\n(c)If p2 is evacuated and sealed:\np1= %d mmHg gauge Pressure',P1_gauge)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Specific_Gravity_and_weight_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.5, page no-117\n",
+"clear\n",
+"clc\n",
+"\n",
+"spe_grav_water=1\n",
+"spe_grav_X=spe_grav_water*100/50\n",
+"wt_dens_water=1000\n",
+"wt_dens_X=wt_dens_water*2\n",
+"printf('Weight Density of X = %d kg/m^3',wt_dens_X)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: water_flow_rate_using_mercury_manometer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.6, page no-117\n",
+"clear\n",
+"clc\n",
+"\n",
+"A=1/20\n",
+"p_diff=1500\n",
+"printf('(a)\nAs Delta_h=A2/A1*h << h and normally negligiblefor well type manometer\nhence, p1-p2 = h = %d =111 mmHg',p_diff)\n",
+"\n",
+"printf('\n(b)\nh measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg\n(Since area of both legs are same)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: readings_and_errors_in_Bourdon_gauge_reading.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.7, page no-119\n",
+"clear\n",
+"clc\n",
+"\n",
+"printf('1 kg/cm^2 = 10 mWG\n')\n",
+"//(a)\n",
+"press=10+2\n",
+"printf('\n(a)Bourdon Gauge is mounted 20 meters below water line:\nPressure read by the Gauge = %d kg/cm^2',press)\n",
+"\n",
+"//(b)\n",
+"press2=10-3\n",
+"printf('\n\n(b)Bourdon Gauge is located 30 meters above the water line:\nPressure read by the Gauge = %d kg/cm^2',press2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Specific_Gravity_and_density_of_liquid.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.8, page no-120\n",
+"clear\n",
+"clc\n",
+"\n",
+"dens_water=1000\n",
+"h1=125\n",
+"h2=250\n",
+"d2=(h1/h2)*dens_water\n",
+"printf('(a)\nDensity of Liquid = %d kg/m^3',d2)\n",
+"printf('\nSpecific Density of the liquid = %.1f',(h1/h2))\n",
+"\n",
+"//(b)\n",
+"printf('\n\n(b)\nIf Values of water and liquid interchanged:\n')\n",
+"d3=(h2/h1)*dens_water\n",
+"printf('\nDensity of Liquid = %d kg/m^3',d3)\n",
+"printf('\nSpecific Density of the liquid = %.1f',(h2/h1))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: strain_gauge_wire_length_and_cross_section_area.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.9, page no-120\n",
+"clear\n",
+"clc\n",
+"\n",
+"R=120\n",
+"l=122\n",
+"a=0.1\n",
+"rho=R*a/l\n",
+"R1=140\n",
+"l1=sqrt(R1*a*l/rho)\n",
+"l1=ceil(l1)\n",
+"printf('Length l1 = %d meters',l1)\n",
+"A1=a*l/l1\n",
+"printf('\nArea A1 = %.4f mm^2',A1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}