summaryrefslogtreecommitdiff
path: root/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb')
-rw-r--r--Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb554
1 files changed, 554 insertions, 0 deletions
diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb
new file mode 100644
index 0000000..21b416d
--- /dev/null
+++ b/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb
@@ -0,0 +1,554 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: calorimetry"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: chapter_3_example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisations\n",
+"m1=250//gm\n",
+"m2=200//gm\n",
+"l=336//j\n",
+"w1=50//gm\n",
+"m3=200//gm\n",
+"t1=100//c\n",
+"//calculations\n",
+"M1=m1+m2+w1\n",
+"J=t1*M1*4.2\n",
+"k=l*m2\n",
+"m=123.2\n",
+"T=m1+m3+m\n",
+"//results\n",
+"printf(' total contents= % 1f gm',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: chapter_3_example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisations\n",
+"m1=10//kg\n",
+"t1=80//c\n",
+"t2=20//c\n",
+"t3=150//c\n",
+"t4=90//c\n",
+"t=100//c\n",
+"a=800//cal/kg\n",
+"//calculations\n",
+"h=m1*1000*(t1-t2)/1000\n",
+"H=a*(t3-t)+540000+1000*(t-t4)\n",
+"k=H/1000\n",
+"x=h/k\n",
+"//results\n",
+"printf(' kg of steam required per hour= % 1f kg/hr',x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: chapter_3_example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation\n",
+"p1=6//atm\n",
+"p2=2//atm\n",
+"ph=89//kg/m^3\n",
+"v=30/1000//ml\n",
+"t1=10//c\n",
+"t3=31.5//c\n",
+"T1=273+t1\n",
+"t2=150//c\n",
+"w1=0.210//kg\n",
+"//calculations\n",
+"m=(p1-p2)*273*ph*v/(T1*1000)\n",
+"t4=(t1+t3)/2\n",
+"h=m*(t2-t4)\n",
+"H=w1*1000*4.18*(t3-t1)\n",
+"c=H/h\n",
+"//results\n",
+"printf(' specific heat= % 1f j/kg*k',c)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: chapter_3_example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisations\n",
+"po=101396.1\n",
+"p=1.293\n",
+"vo=1/p\n",
+"t=273\n",
+"cp=961.4\n",
+"//calculations\n",
+"R=po*vo/t\n",
+"cv=cp-R\n",
+"//results\n",
+"printf(' specific heat at constant volume= % 1f',cv)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: chapter_3_example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisations\n",
+"m=5//kg\n",
+"m1=2.09*10^8\n",
+"val=10^7//cal/kg\n",
+"p=0.12\n",
+"//calculations\n",
+"w=p*m1/(60*60)\n",
+"H=w/746\n",
+"//results\n",
+"printf(' average horse power= % 1f',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: chapter_3_example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisations\n",
+"po=101396.16//N/m^2\n",
+"vo=22.4//l\n",
+"t=273\n",
+"m=4*1000//gm\n",
+"//calculations\n",
+"R=po*vo/t\n",
+"c=R/m\n",
+"//results\n",
+"printf(' pressure of the gas= % 1f j',c)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: chapter_3_example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation\n",
+"p1=1\n",
+"p2=0.8\n",
+"t1=25//c\n",
+"t2=10//c\n",
+"p=0.4\n",
+"t3=61//c\n",
+"t4=12//c\n",
+"//calculations\n",
+"p1=p*(t3-t4)\n",
+"m=(t1-t2)\n",
+"c=m/p1\n",
+"//results\n",
+"printf(' specific heat of liquid= % 1f cal/gm*c',c)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19: chapter_3_example_19.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation\n",
+"p16=80//cm\n",
+"v16=432//cc\n",
+"t=273//k\n",
+"po=76//cm\n",
+"t=16//c\n",
+"t16=273+t//k\n",
+"T=273//k\n",
+"poxy=0.0014\n",
+"cfe=0.09\n",
+"t1=15//c\n",
+"t2=184//c\n",
+"m1=2//gm\n",
+"//calculations\n",
+"v0=(p16*v16*T)/(po*t16)\n",
+"m=poxy*v0\n",
+"h=m1*cfe*(t1+t2)\n",
+"l=h/m\n",
+"//results\n",
+"printf(' latent heat= % 1f cal',l)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: chapter_3_example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"cag=56\n",
+"cpb=31\n",
+"cal=220\n",
+"//CALCULATIONS\n",
+"mag=1000/cag\n",
+"mpb=1000/cpb\n",
+"mal=1000/cal\n",
+"//results\n",
+"printf(' mass of silver= % 1f kg',mag)\n",
+"printf(' mass of lead= % 1f kg',mpb)\n",
+"printf(' mass of aluminium= % 1f kg',mal)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: chapter_3_example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisations\n",
+"m1=0.5//kg\n",
+"m2=0.09//kg\n",
+"t1=19//c\n",
+"t2=15//c\n",
+"t3=38//c\n",
+"t4=50//c\n",
+"s=1000\n",
+"//CALCULATIONS\n",
+"A=[4000 -15.5; 23000 11.5]\n",
+"b=[-360;1080]\n",
+"c=A\b\n",
+"R1=c(1,1)\n",
+"R2=c(2,1)\n",
+"//results\n",
+"printf(' water equivalent of mercury= % 1f kg',R1)\n",
+"printf(' \n specific heat of mercury= % 1f c /kg/c',R2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: chapter_3_example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"c=10^6//calories\n",
+"tw=100//sec\n",
+"ta=74//sec\n",
+"dw=1000//kg/m^3\n",
+"da=800//Kg/m^3\n",
+"t2=50//c\n",
+"t1=40//c\n",
+"//CALCULATIONS\n",
+"hw=((dw*1000*10)+(c*(t2-t1)))\n",
+"rw=hw/tw\n",
+"C=(((rw*ta)/(t2-t1))-c)/da\n",
+"printf(' specific heat of alcohol= % 1f calories/kg',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: chapter_3_example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"mc=0.1//kg\n",
+"vl1=150//cc\n",
+"vl2=150//cc\n",
+"hl1=600\n",
+"gl1=1200\n",
+"hl2=400\n",
+"gl2=900\n",
+"t1=50//c\n",
+"t2=40//c\n",
+"sc=100\n",
+"r1=2\n",
+"//CALCULATIIONS\n",
+"m1=vl1*gl1/(10^6)\n",
+"rc1=(m1*hl1+mc*sc)*r1\n",
+"k= -rc1/t1\n",
+"m2=vl2*gl2/(10^6)\n",
+"b=(m2*hl2+mc*sc)\n",
+"j=-k*t2\n",
+"//results\n",
+"printf(' rate of cooling= % 1f cal/min',j)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: chapter_3_example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialistions\n",
+"t1=80//c\n",
+"t2=50//c\n",
+"t3=60//c\n",
+"t4=30//c\n",
+"t=20\n",
+"e=5\n",
+"//CALCULATIONS\n",
+"k=2.3026*log((t1-t)/(t2-t))/e\n",
+"T=2.3026*log((t3-t)/(t4-t))/k\n",
+"//results\n",
+"printf(' time it will take = % 1f min',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: chapter_3_example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"e=1.586//v\n",
+"i=0.1444//amp\n",
+"t=4*60//sec\n",
+"m=0.3963//kg\n",
+"T=1.219//k\n",
+"wt=206.4\n",
+"//CALCULATIONS\n",
+"hg=e*i*t\n",
+"c=hg/(m*T*4.18)\n",
+"a=c*wt\n",
+"printf(' atomic heat of lead= % 1f 1/k',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: chapter_3_example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation if variables\n",
+"m=1*10^-4//kg\n",
+"v=0.0005//m^3\n",
+"l=22.57*10^5//j\n",
+"t1=15//c\n",
+"p=6//kg/m^3\n",
+"//calculations\n",
+"H=m*l\n",
+"h=v*p*(100-t1)*4.18\n",
+"c=H/h\n",
+"//results\n",
+"printf(' specific heat of gas at constant volume= % 1f j',c)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: chapter_3_example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisations\n",
+"j1=21*10^5//j\n",
+"j2=3.36*10^5//j\n",
+"//calculations\n",
+"x=j1*100/(j1+j2)\n",
+"//results\n",
+"printf(' percentage of water present will be frozen= % 1f',x)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}