diff options
Diffstat (limited to 'Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb')
-rw-r--r-- | Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb | 554 |
1 files changed, 554 insertions, 0 deletions
diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb new file mode 100644 index 0000000..21b416d --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/3-calorimetry.ipynb @@ -0,0 +1,554 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: calorimetry" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: chapter_3_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m1=250//gm\n", +"m2=200//gm\n", +"l=336//j\n", +"w1=50//gm\n", +"m3=200//gm\n", +"t1=100//c\n", +"//calculations\n", +"M1=m1+m2+w1\n", +"J=t1*M1*4.2\n", +"k=l*m2\n", +"m=123.2\n", +"T=m1+m3+m\n", +"//results\n", +"printf(' total contents= % 1f gm',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12: chapter_3_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m1=10//kg\n", +"t1=80//c\n", +"t2=20//c\n", +"t3=150//c\n", +"t4=90//c\n", +"t=100//c\n", +"a=800//cal/kg\n", +"//calculations\n", +"h=m1*1000*(t1-t2)/1000\n", +"H=a*(t3-t)+540000+1000*(t-t4)\n", +"k=H/1000\n", +"x=h/k\n", +"//results\n", +"printf(' kg of steam required per hour= % 1f kg/hr',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: chapter_3_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p1=6//atm\n", +"p2=2//atm\n", +"ph=89//kg/m^3\n", +"v=30/1000//ml\n", +"t1=10//c\n", +"t3=31.5//c\n", +"T1=273+t1\n", +"t2=150//c\n", +"w1=0.210//kg\n", +"//calculations\n", +"m=(p1-p2)*273*ph*v/(T1*1000)\n", +"t4=(t1+t3)/2\n", +"h=m*(t2-t4)\n", +"H=w1*1000*4.18*(t3-t1)\n", +"c=H/h\n", +"//results\n", +"printf(' specific heat= % 1f j/kg*k',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: chapter_3_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"po=101396.1\n", +"p=1.293\n", +"vo=1/p\n", +"t=273\n", +"cp=961.4\n", +"//calculations\n", +"R=po*vo/t\n", +"cv=cp-R\n", +"//results\n", +"printf(' specific heat at constant volume= % 1f',cv)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: chapter_3_example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m=5//kg\n", +"m1=2.09*10^8\n", +"val=10^7//cal/kg\n", +"p=0.12\n", +"//calculations\n", +"w=p*m1/(60*60)\n", +"H=w/746\n", +"//results\n", +"printf(' average horse power= % 1f',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16: chapter_3_example_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"po=101396.16//N/m^2\n", +"vo=22.4//l\n", +"t=273\n", +"m=4*1000//gm\n", +"//calculations\n", +"R=po*vo/t\n", +"c=R/m\n", +"//results\n", +"printf(' pressure of the gas= % 1f j',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17: chapter_3_example_17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p1=1\n", +"p2=0.8\n", +"t1=25//c\n", +"t2=10//c\n", +"p=0.4\n", +"t3=61//c\n", +"t4=12//c\n", +"//calculations\n", +"p1=p*(t3-t4)\n", +"m=(t1-t2)\n", +"c=m/p1\n", +"//results\n", +"printf(' specific heat of liquid= % 1f cal/gm*c',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.19: chapter_3_example_19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation\n", +"p16=80//cm\n", +"v16=432//cc\n", +"t=273//k\n", +"po=76//cm\n", +"t=16//c\n", +"t16=273+t//k\n", +"T=273//k\n", +"poxy=0.0014\n", +"cfe=0.09\n", +"t1=15//c\n", +"t2=184//c\n", +"m1=2//gm\n", +"//calculations\n", +"v0=(p16*v16*T)/(po*t16)\n", +"m=poxy*v0\n", +"h=m1*cfe*(t1+t2)\n", +"l=h/m\n", +"//results\n", +"printf(' latent heat= % 1f cal',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: chapter_3_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"cag=56\n", +"cpb=31\n", +"cal=220\n", +"//CALCULATIONS\n", +"mag=1000/cag\n", +"mpb=1000/cpb\n", +"mal=1000/cal\n", +"//results\n", +"printf(' mass of silver= % 1f kg',mag)\n", +"printf(' mass of lead= % 1f kg',mpb)\n", +"printf(' mass of aluminium= % 1f kg',mal)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: chapter_3_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"m1=0.5//kg\n", +"m2=0.09//kg\n", +"t1=19//c\n", +"t2=15//c\n", +"t3=38//c\n", +"t4=50//c\n", +"s=1000\n", +"//CALCULATIONS\n", +"A=[4000 -15.5; 23000 11.5]\n", +"b=[-360;1080]\n", +"c=A\b\n", +"R1=c(1,1)\n", +"R2=c(2,1)\n", +"//results\n", +"printf(' water equivalent of mercury= % 1f kg',R1)\n", +"printf(' \n specific heat of mercury= % 1f c /kg/c',R2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: chapter_3_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"c=10^6//calories\n", +"tw=100//sec\n", +"ta=74//sec\n", +"dw=1000//kg/m^3\n", +"da=800//Kg/m^3\n", +"t2=50//c\n", +"t1=40//c\n", +"//CALCULATIONS\n", +"hw=((dw*1000*10)+(c*(t2-t1)))\n", +"rw=hw/tw\n", +"C=(((rw*ta)/(t2-t1))-c)/da\n", +"printf(' specific heat of alcohol= % 1f calories/kg',C)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: chapter_3_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"mc=0.1//kg\n", +"vl1=150//cc\n", +"vl2=150//cc\n", +"hl1=600\n", +"gl1=1200\n", +"hl2=400\n", +"gl2=900\n", +"t1=50//c\n", +"t2=40//c\n", +"sc=100\n", +"r1=2\n", +"//CALCULATIIONS\n", +"m1=vl1*gl1/(10^6)\n", +"rc1=(m1*hl1+mc*sc)*r1\n", +"k= -rc1/t1\n", +"m2=vl2*gl2/(10^6)\n", +"b=(m2*hl2+mc*sc)\n", +"j=-k*t2\n", +"//results\n", +"printf(' rate of cooling= % 1f cal/min',j)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: chapter_3_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialistions\n", +"t1=80//c\n", +"t2=50//c\n", +"t3=60//c\n", +"t4=30//c\n", +"t=20\n", +"e=5\n", +"//CALCULATIONS\n", +"k=2.3026*log((t1-t)/(t2-t))/e\n", +"T=2.3026*log((t3-t)/(t4-t))/k\n", +"//results\n", +"printf(' time it will take = % 1f min',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: chapter_3_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"e=1.586//v\n", +"i=0.1444//amp\n", +"t=4*60//sec\n", +"m=0.3963//kg\n", +"T=1.219//k\n", +"wt=206.4\n", +"//CALCULATIONS\n", +"hg=e*i*t\n", +"c=hg/(m*T*4.18)\n", +"a=c*wt\n", +"printf(' atomic heat of lead= % 1f 1/k',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: chapter_3_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation if variables\n", +"m=1*10^-4//kg\n", +"v=0.0005//m^3\n", +"l=22.57*10^5//j\n", +"t1=15//c\n", +"p=6//kg/m^3\n", +"//calculations\n", +"H=m*l\n", +"h=v*p*(100-t1)*4.18\n", +"c=H/h\n", +"//results\n", +"printf(' specific heat of gas at constant volume= % 1f j',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: chapter_3_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisations\n", +"j1=21*10^5//j\n", +"j2=3.36*10^5//j\n", +"//calculations\n", +"x=j1*100/(j1+j2)\n", +"//results\n", +"printf(' percentage of water present will be frozen= % 1f',x)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |