summaryrefslogtreecommitdiff
path: root/Gas_Turbines_by_V_Ganesan/5-Ideal_Cycles_and_their_Analysis.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Gas_Turbines_by_V_Ganesan/5-Ideal_Cycles_and_their_Analysis.ipynb')
-rw-r--r--Gas_Turbines_by_V_Ganesan/5-Ideal_Cycles_and_their_Analysis.ipynb655
1 files changed, 655 insertions, 0 deletions
diff --git a/Gas_Turbines_by_V_Ganesan/5-Ideal_Cycles_and_their_Analysis.ipynb b/Gas_Turbines_by_V_Ganesan/5-Ideal_Cycles_and_their_Analysis.ipynb
new file mode 100644
index 0000000..6633ed1
--- /dev/null
+++ b/Gas_Turbines_by_V_Ganesan/5-Ideal_Cycles_and_their_Analysis.ipynb
@@ -0,0 +1,655 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Ideal Cycles and their Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10: Determination_of_the_cycle_thermal_efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"T1=15+273; // Inlet temperature of air at compressor inlet in kelvin\n",
+"rp=6; // Compressor pressure ratio\n",
+"T3=750+273; // Maximum permissible temperature in kelvin\n",
+"T5=T3; // After reheat\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"\n",
+"c=rp^((r-1)/r); \n",
+"T2=T1*c; // Temperature at state 2\n",
+"p3_p4=sqrt (rp); // For maximum expansion work\n",
+"T4=T3/(p3_p4)^((r-1)/r); // Temperature at state 4\n",
+"T6=T4; // As pressure ratio is same\n",
+"Wc=Cp*(T2-T1); // Compressor work\n",
+"WT=Cp*(T3-T4)+Cp*(T5-T6); // Turbine work\n",
+"T7=T4; // Because of 100% regeneration\n",
+"q=Cp*(T3-T7)+Cp*(T5-T4); // Heat supplied\n",
+"WN=WT-Wc; // Net work done\n",
+"eff=WN/q; // Efficiency of the plant\n",
+"Wratio=WN/WT; // Work ratio\n",
+"disp ('kJ/kg of air',q,'Heat supplied = ');\n",
+"disp ('kW (roundoff error)',WN,'Net shaft work = ');\n",
+"disp ('%',eff*100,'The cycle thermal efficiency = ');\n",
+"disp (Wratio,'Work ratio = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: Calculation_of_Efficiency_under_conditions_giving_maximum_work.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Tmin=5+273; // Minimum operating temperature in kelvin\n",
+"Tmax=839+273; // Maximum operating temperature in kelvin \n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"\n",
+"eff_carnot=1-Tmin/Tmax; // Efficiency of the carnot cycle\n",
+"c=1/(1-eff_carnot);\n",
+"p2_p1=c^(r/(r-1)); // Pressure ratio\n",
+"disp (p2_p1,'(i).Pressure ratio at which efficiency equals Carnot cycle efficiency = ');\n",
+"t=Tmax/Tmin; // Temperature ratio\n",
+"// Pressure ratio for maximum work is obtained when\n",
+"c=sqrt (t); \n",
+"p2_p1=c^(r/(r-1)); // Pressure ratio\n",
+"eff=1-1/c;// Efficiency at maximum work output\n",
+"disp (p2_p1,'(ii).Pressure ratio at which maximum work is obtained = ');\n",
+"disp ('%',eff*100,'(iii).Efficiency at maximum work output = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12: Comparison_of_basic_cycle_with_modified_cycles.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"rp=4;// Overall pressure ratio \n",
+"T1=300; // Temperature at state 1 in kelvin\n",
+"T3=1000; // Temperature at state 3 in kelvin\n",
+"Cp=1; // Specific heat at constant pressure in kJ/kg K\n",
+"Cv=0.717; // Specific heat at constant volume in kJ/kg K\n",
+"\n",
+"// Basic cycle\n",
+"r=Cp/Cv; // Specific heat ratio\n",
+"c=rp^((r-1)/r);\n",
+"t=T3/T1; // Temperature ratio\n",
+"WN=Cp*T1*(t*(1-1/c)-(c-1)); // Net work output\n",
+"eff=(1-1/c)*100; // Efficiency of the cycle\n",
+"\n",
+"// Basic cycle with heat exchanger\n",
+"WN_he=WN;\n",
+"eff_he=(1-c/t)*100; // Efficiency of the cycle with heat exchanger\n",
+"dev_WN1=(WN_he-WN)*100/WN; //Percentage deviation of Net work from basic cycle\n",
+"dev_eff1=(eff_he-eff)*100/eff; // Percentage deviation of efficiency from basic cycle\n",
+"\n",
+"// Basic cycle with intercooled compressor\n",
+"WN_ic=(Cp*T1)*(t*(1-1/c)-2*(sqrt(c)-1));\n",
+"eff_ic=(1-(((t/c)+sqrt(c)-2)/(t-sqrt(c))))*100;\n",
+"dev_WN2=(WN_ic-WN)*100/WN; //Percentage deviation of Net work from basic cycle\n",
+"dev_eff2=(eff_ic-eff)*100/eff; // Percentage deviation of efficiency from basic cycle\n",
+"\n",
+"// Basic cycle with heat exchanger and intercooled compressor\n",
+"WN_iche=WN_ic;\n",
+"eff_iche=(1-((2*(sqrt(c)-1))/(t*(1-1/c))))*100;\n",
+"dev_WN3=(WN_iche-WN)*100/WN; //Percentage deviation of Net work from basic cycle\n",
+"dev_eff3=(eff_iche-eff)*100/eff; // Percentage deviation of efficiency from basic cycle\n",
+"\n",
+"printf ('Cycle \t\t\t\t\t\t WN(kJ/kg) \t\tefficiency (in percentage)\t\t percentage Change in WN \t\tpercentage change in efficiency');\n",
+"printf('\n\t\t\t\t\t\t(roundoff error) \t(roundoff error) \t\t\t (roundoff error)\t\t\t\t (roundoff error)');\n",
+"printf ('\n\nBasci cycle \t\t\t\t\t %f \t\t\t %f\t\t\t\t\t - \t\t\t\t\t -',WN,eff);\n",
+"printf ('\n\nWith Heat Exchanger \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f',WN_he,eff_he,dev_WN1,dev_eff1);\n",
+"printf ('\n\nWith intercooling \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f',WN_ic,eff_ic,dev_WN2,dev_eff2);\n",
+"printf ('\n\nWith Heat Exchanger & Intercooling \t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f',WN_iche,eff_iche,dev_WN3,dev_eff3);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: Comparison_of_Carnot_efficiency_with_Brayton_efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"T1=27+273; // Temperature at state 1 in kelvin\n",
+"T3=827+273; // Temperature at state 3 in kelvin\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"\n",
+"t=T3/T1; // Temperature ratio\n",
+"Wmax=Cp*((T3*(1-1/sqrt(t)))-T1*(sqrt(t)-1)); // Maximum work\n",
+"eff_wmax=(1-1/sqrt(t)); // Efficiency of brayton cycle\n",
+"Tmax=T3; Tmin=T1;\n",
+"eff_carnot=(Tmax-Tmin)/Tmax; // Carnot efficiency\n",
+"disp ('kJ/kg of air',Wmax,'Maximum net work per kg of air = ');\n",
+"disp ('%',eff_wmax*100,'Brayton cycle efficiency = ');\n",
+"disp ('%',eff_carnot*100,'Carnot cycle efficiency = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.15: Calculation_of_Improvement_in_Efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p1=1; // Pressure at state 1 in bar\n",
+"T1=300; // Temperature at state 1 in kelvin\n",
+"p4=5; // Pressure at state 4 in bar\n",
+"T5=1250; // Temperature at state 5 in kelvin\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"\n",
+"rp=p4/p1; // pressure ratio\n",
+"p2=sqrt (rp); // Because of perfect intercooling\n",
+"c1=p2^((r-1)/r); \n",
+"T2=T1*c1; // Temperature at state 2\n",
+"T4=T2; T3=T1;\n",
+"\n",
+"Wc1=Cp*(T2-T1); // Work of compressor 1\n",
+"Wc=2*Wc1; // net work of compressor\n",
+"WT1=Wc;\n",
+"T6=T5-(WT1/Cp); // Temperature at state 6\n",
+"p5_p6=(T5/T6)^(r/(r-1)); // Pressure ratio\n",
+"p6=rp/p5_p6; // Pressure at state 6\n",
+"p7=p1; T7=T5;p8=p6;\n",
+"T8=T7*(p7/p8)^((r-1)/r); // Temperature in state 8\n",
+"WT2=Cp*(T7-T8); // Turbine 2 work\n",
+"q=Cp*(T5-T4)+Cp*(T7-T6); // Heat supplied\n",
+"eff=WT2/q; // Efficiency of the cycle\n",
+"// With regenerator\n",
+"T9=T8;\n",
+"q_withregen=Cp*((T5-T9)+(T7-T6)); // Heat supplied with regenerator\n",
+"eff_withregen=WT2/q_withregen; // Efficiency of the cycle with regenerator\n",
+"I_eff=(eff_withregen-eff)/eff_withregen; // Percentage improvement in efficiency\n",
+"\n",
+"disp ('%',eff*100,'Efficiency of the cycle = ','kJ/kg',q,'Heat supplied = ','kJ/kg',WT2,'Work of turbine = ','(i). Without regenerator ');\n",
+"disp ('%',eff_withregen*100,'Efficiency of the cycle = ','kJ/kg (roundoff error)',q_withregen,'Heat supplied = ','(ii). With regenerator' );\n",
+"\n",
+"disp ('%',I_eff*100,'Percentage improvement in efficiency = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.16: Calculation_of_Efficiency_ratio_of_the_power_plants.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p1=1; // pressure at inlet in bar\n",
+"T1=27+273; // Temperature at inlet in kelvin\n",
+"T4=1200; // Maximum temperature in kelvin\n",
+"t=T4/T1; // Temperature ratio\n",
+"r=1.4; // Specific heat ratio\n",
+"\n",
+"rp=t;\n",
+"c=rp^((r-1)/r);\n",
+"x=(1-sqrt(c)/rp)/(1-c/rp);\n",
+"eff2_1=x;\n",
+"r1=sqrt(rp);\n",
+"r2=r1; r3=r1; r4=r1;\n",
+"\n",
+"disp (eff2_1,'Efficiency ratio of power plants = ');\n",
+"disp (r4,'pressure ratio of LPT = ',r3,'pressure ratio of HPT = ',r2,'pressure ratio of HPC = ',r1,'pressure ratio of LPC = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19: Determination_of_Net_power_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"m=30; // Mass flow rate in kg/s\n",
+"p1=1; // pressure of air at compressor inlet in bar\n",
+"T1=273+15; // Temperature of air at compressor inlet in kelvin\n",
+"p2=10.5; // Pressure of air at compressor outlet\n",
+"T_R=420; // Temperature rise due to combustion in kelvin\n",
+"p4=1.2; // Pressure at turbine outlet in bar\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"\n",
+"T2=T1*(p2/p1)^((r-1)/r); // Temperature at state 2\n",
+"T3=T2+T_R; // Temperature at state 3\n",
+"p3=p2;\n",
+"T4=T3/(p3/p4)^((r-1)/r);\n",
+"Wc=m*Cp*(T2-T1); // Compressor work\n",
+"WT=m*Cp*(T3-T4); // Turbine work\n",
+"WN=WT-Wc; // Net work output\n",
+"Q=m*Cp*(T3-T2); // Heat supplied\n",
+"eff_th=WN/Q; // Thermal efficiency\n",
+"\n",
+"disp ('%',eff_th*100,'Thermal efficiency = ','kW (roundoff error)',WN,'Power output = ','kW',Q,'Heat supplied = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Calculation_of_MEP_and_Efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p1=1; // Pressure before compression in bar\n",
+"T1=350; // Temperature before compression in kelvin\n",
+"T3=2000; // Temperature after combustion in kelvin\n",
+"rp=1.3; // Pressure ratio\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"R=287; // Characteristic gas constant in J/kg K\n",
+"\n",
+"T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression\n",
+"T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion\n",
+"Wc=Cp*(T2-T1); // Work done during compression\n",
+"WT=Cp*(T3-T4); // Work done during expansion\n",
+"WN=WT-Wc; // Net work done\n",
+"p2=rp*p1; // Pressure at state 2\n",
+"p3=p2; p4=p1; // Constant pressure process\n",
+"V1=R*T1/(p1*10^5); // specific Volume at state 1\n",
+"V2=R*T2/(p2*10^5); // specific Volume at state 2\n",
+"V3=R*T3/(p3*10^5); // specific Volume at state 3\n",
+"V4=R*T4/(p4*10^5); // specific Volume at state 4\n",
+"imep=WN*10^3/(V4-V2); // Mean effective pressure\n",
+"q=Cp*(T3-T2); // Heat supplied\n",
+"eff=WN/q; // Efficiency of a Joule cycle\n",
+"disp ('bar',imep*10^-5,'Mean effective pressure = ');\n",
+"disp ('%',eff*100,'Efficiency of a Joule cycle = ');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Calculation_of_Improvement_in_Efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p1=1; // Pressure before compression in bar\n",
+"T1=350; // Temperature before compression in kelvin\n",
+"T3=2000; // Temperature after combustion in kelvin\n",
+"rp=1.3; // Pressure ratio\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"R=287; // Characteristic gas constant in J/kg K\n",
+"\n",
+"T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression\n",
+"T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion\n",
+"Wc=Cp*(T2-T1); // Work done during compression\n",
+"WT=Cp*(T3-T4); // Work done during expansion\n",
+"WN=WT-Wc; // Net work done\n",
+"T5=T4; // For a perfect heat exchange\n",
+"q=Cp*(T3-T5); // Heat added\n",
+"eff2=WN/q; // Efficiency of a modified Joule cycle\n",
+"eff1=0.072220534; // Efficiency of a joule cycle\n",
+"disp ('%',eff2*100,'Efficiency of a modified Joule cycle = ');\n",
+"disp (eff2/eff1,'Improvement in efficiency = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: calculation_of_net_power_output_of_the_cycle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"rp=6; // Pressure ratio\n",
+"T1=300; // Inlet air temperature to the compressor in kelvin\n",
+"T3=577+273; // Inlet temperature of air at turbine in kelvin\n",
+"Vr=240; // Volume rate in m^3/s\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"R=287; // Characteristic gas constant in J/kg K\n",
+"p1=1; // pressure at state 1 in bar\n",
+"\n",
+"T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression\n",
+"T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion\n",
+"Wc=Cp*(T2-T1); // Work done during compression\n",
+"WT=Cp*(T3-T4); // Work done during expansion\n",
+"WN=WT-Wc; // Net work done\n",
+"q=Cp*(T3-T2); // Heat supplied\n",
+"row1=p1*10^5/(R*T1); // Density of air at state 1\n",
+"P=WN*Vr*row1; // Power output\n",
+"eff=WN/q; // Efficiency of a cycle\n",
+"disp ('MW (roundoff error)',P/1000,'Power Output = ');\n",
+"disp ('%',eff*100,'Efficiency of a cycle = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Calculation_of_Efficiency_and_work_of_compression.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"T1=300; // Inlet air temperature to the compressor in kelvin\n",
+"p1=1; // pressure at state 1 in bar\n",
+"T2=475; // Temperature at discharge in kelvin\n",
+"p2=5;// Pressure at state 2\n",
+"T5=655; // Temperature after heat exchanger in kelvin\n",
+"T3=870+273; // Temperature at he turbine inlet in kelvin\n",
+"T4=450+273; // Temperature after turbine in kelvin\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"R=287; // Characteristic gas constant in J/kg K\n",
+"\n",
+"Wc=Cp*(T2-T1); // Work done during compression\n",
+"WT=Cp*(T3-T4); // Work done during expansion\n",
+"WN=WT-Wc; // Net work done\n",
+"q=Cp*(T3-T5); // Heat supplied\n",
+"eff=WN/q; // Efficiency of a cycle\n",
+"\n",
+"disp ('kJ/kg',WN,'(i). The output per kg of air = ');\n",
+"disp ('%',eff*100,'(ii).The efficiency of the cycle = ');\n",
+"disp ('kJ/kg',Wc,'(iii). The work required to drive the compressor = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Calculation_of_Thermal_Efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p1=1.4; // Pressure at state 1 in bar\n",
+"T1=310; // Temperature at state 1 in kelvin\n",
+"rp=5; // Pressure ratio\n",
+"Tmax=1050; // Maximum temperatuer in kelvin\n",
+"WN=3000; // Net output in kW\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"R=287; // Characteristic gas constant in J/kg K\n",
+"\n",
+"T3=Tmax;\n",
+"T2=T1*(rp)^((r-1)/r); // Temperature at the state 2\n",
+"T4=T3/(rp)^((r-1)/r); // Temperature at the state 4\n",
+"T5=T4; // As regenerator effectiveness in 100 %\n",
+"m=WN/(Cp*((T3-T4)-(T2-T1))); // mass flow rate of air\n",
+"eff=(T3-T4-T2+T1)/(T3-T5); // Efficiency of a cycle\n",
+"disp ('%',eff*100,'(i). Thermal efficiency of the cycle = ');\n",
+"disp ('kg/min (roundoff error)',m*60,'(ii). The mass flow rate of air per minute = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Calculation_of_Pressure_ratio_of_compressor_and_turbine.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"T1=290; // Compressor inlet temperature in kelvin\n",
+"T2=460; // Compressor outlet temperature in kelvin\n",
+"T3=900+273; // Turbine inlet temperature in kelvin\n",
+"T4=467+273; // Turbine outlet temperature in kelvin\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"R=287; // Characteristic gas constant in J/kg K\n",
+"\n",
+"c=T2/T1; // Temperature ratio\n",
+"rpc=c^(r/(r-1)); // Compression ratio\n",
+"WN=(Cp*((T3-T4)-(T2-T1))); // Specific power\n",
+"T5=T4; // Assuming regenerator effectiveness to be 100%\n",
+"eff=WN/(Cp*(T3-T5)); // Overall efficiency of the cycle\n",
+"Wc=Cp*(T2-T1); // Work required to drive the compressor\n",
+"rpt=(T3/T4)^(r/(r-1)); // Turbine pressure ratio\n",
+"disp (rpt,' Turbine pressure ratio = ',rpc,' Compressor pressure ratio = ','(i).');\n",
+"disp ('kJ/kg',WN,'(ii). Specific power output = ');\n",
+"disp ('%',eff*100, '(iii). Overall efficiency of the cycle = ');\n",
+"disp ('kJ/kg',Wc,' (iv). Work required to drive the compressor = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Calculation_of_temperature_drop_across_the_turbine.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"nW_WT=0.563; // Ratio of net work to turbine work\n",
+"T1=300; // Inlet temperature to the compressor in kelvin\n",
+"eff=0.35; // Thermal efficiency of the unit\n",
+"m=10; // massflow rate in kg/s\n",
+"Cp=1; // Specific heat at constant pressure in kJ/kg K\n",
+"r=1.4; // Specific heat ratio\n",
+"\n",
+"c=1/(1-eff); // For ideal simple cycle\n",
+"T2=T1*c; // Temperature at state 2\n",
+"Wc=Cp*(T2-T1); // Compressor work\n",
+"WT=Wc/(1-nW_WT); // Turbine work\n",
+"WN=WT-Wc; // Net work\n",
+"q=WN/eff; // Net heat supplied per kg of air\n",
+"T3=(q/Cp)+T2; // Temperature at state 3\n",
+"T4=T3/c; // Temperature at state 4\n",
+"T3_T4=T3-T4; // Temperature drop across the turbine\n",
+"disp ('K',T3_T4,'Temperature drop across the turbine = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: Calculation_of_turbine_pressure_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p=336.5; //specific power output of a turbine in kW/kg\n",
+"T4=700; // Temperature at turbine outlet in kelvin\n",
+"Cp=1; // Specific heat at constant pressure in kJ/kg K\n",
+"Cv=0.717; // Specific heat at constant volume in kJ/kg K\n",
+"\n",
+"r=Cp/Cv; // Specific heat ratio\n",
+"T3=T4+(p/Cp); // Temperature at turbine inlet \n",
+"p3_p4=(T3/T4)^(r/(r-1)); // Pressure ratio across the turbine\n",
+"disp (round(p3_p4),'Pressure ratio across the turbine = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Estimation_of_thermal_efficiency_of_the_plant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"T1=300; // Minimum operating temperature in kelvin\n",
+"T3=900; // Maximum operating temperature in kelvin\n",
+"p1=1; // Minimum pressure in bar\n",
+"p3=4; // Maximum pressure in bar\n",
+"m=1600; // Mass flowrate in kg/min\n",
+"r=1.4; // Specific heat ratio\n",
+"Cp=1.005; // Specific heat at constant pressure in kJ/kg K\n",
+"\n",
+"p2=p3; p4=p1; // Constant pressure process\n",
+"c=(p2/p1)^((r-1)/r); \n",
+"eff=(1-1/c); // The efficiency of the cycle\n",
+"t=T3/T1; // ratio of maximum and minimum temperature\n",
+"W=Cp*T1*(t*(1-1/c)-(c-1)); // Work output per kg of air\n",
+"P=(m/60)*W; // Shaft power available\n",
+"disp ('%',eff*100,' Thermal efficiency of the plant = ');\n",
+"disp ('kW (roundoff error)',P,'Shaft power available for external Load = ');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}