diff options
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/9-System_of_Particles.ipynb')
-rw-r--r-- | Fundamental_Of_Physics_by_D_Haliday/9-System_of_Particles.ipynb | 318 |
1 files changed, 318 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/9-System_of_Particles.ipynb b/Fundamental_Of_Physics_by_D_Haliday/9-System_of_Particles.ipynb new file mode 100644 index 0000000..8043cbf --- /dev/null +++ b/Fundamental_Of_Physics_by_D_Haliday/9-System_of_Particles.ipynb @@ -0,0 +1,318 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: System of Particles" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Sample_Problem_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('degree_rad.sci',-1)\n", +"\n", +"//Given that\n", +"m1 = 1.2 //in kg\n", +"m2 = 2.5 //in kg\n", +"m3 = 3.4 //in kg\n", +"a = 140 //in cm\n", +"\n", +"//Sample Problem 9-1\n", +"printf('**Sample Problem 9-1**\n')\n", +"r1 = [0, 0]\n", +"r2 = [a, 0]\n", +"r3 = [a*cos(dtor(60)), a*sin(dtor(60))]\n", +"Rc = (m1*r1 + m2*r2 + m3*r3)/(m1 + m2 + m3)\n", +"printf('The co-ordinate of center of mass are (%f, %f)', Rc(1), Rc(2))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Sample_Problem_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Sample Problem 9-2\n", +"printf('**Sample Problem 9-2**\n')\n", +"R = poly(0, 'R')\n", +"//Mass is proportinal to area\n", +"Aw = %pi* (2*R)^2\n", +"Ac = %pi* R^2\n", +"//& the x-co-ordinate of the masses\n", +"CMw = 0\n", +"CMc = -R\n", +"CMf = pdiv((Aw*CMw - Ac*CMc), (Aw - Ac))\n", +"printf('The CM is located at a distace of %fR to the right of the center', horner(CMf, 1))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Sample_Problem_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('degree_rad.sci',-1)\n", +"\n", +"//Given that\n", +"m1 = 4 //in kg\n", +"m2 = 8 //in kg\n", +"m3 = 4 //in kg\n", +"F1 = [-6, 0]\n", +"F2 = [12*cos(dtor(45)), 12*sin(dtor(45))]\n", +"F3 = [14, 0]\n", +"\n", +"//Sample Problem 9-3\n", +"printf('**Sample Problem 9-3**\n')\n", +"aC = (F1 + F2 + F3)/(m1 + m2+ m3)\n", +"printf('The acceleration of center of mass is %fm/s^2 at \nan angle of %f degrees to the positive x-axis', norm(aC), rtod(atan(aC(2)/aC(1))))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Sample_Problem_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('degree_rad.sci',-1)\n", +"\n", +"//Given that\n", +"m = 2.0 //in kg\n", +"v1 = [0, -0.50]\n", +"v2 = [0.40, 0]\n", +"\n", +"//Sample Problem 9-4\n", +"printf('**Sample Problem 9-4**\n')\n", +"deltaP = m* (v2 - v1)\n", +"printf('The change in mometum vactor in kg.m/sec is %1.1fi + %1.1fj', deltaP(1), deltaP(2))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Sample_Problem_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"//Before collision\n", +"m = 6 //in kg\n", +"v = 4 //in m/sec\n", +"//After collision\n", +"m1 = 2 //in kg\n", +"\n", +"//Sample Problem 9-5\n", +"printf('**Sample Problem 9-5**\n')\n", +"m2 = m - m1\n", +"v1 = 8.0 //in m/s\n", +"v2 = (m*v - m1*v1)/m2\n", +"printf('The velocity of peiece having mass m2 is %dm/s', v2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Sample_Problem_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"M = 1 //(say)to get the answer directly\n", +"Vi = 2100 //in km/h\n", +"//initial momentum\n", +"Pi = M* Vi\n", +"Vrel = 500 //in km/h\n", +"\n", +"//Sample Problem 9-6\n", +"printf('**Sample Problem 9-6**\n')\n", +"//Assuming Vf as the final velocity of the hauler\n", +"Vf = poly(0, 'Vf')\n", +"Pf = 0.20*M*(Vf - Vrel) + (M - 0.20*M)*Vf\n", +"p = Pi - Pf\n", +"Vf = roots(p)\n", +"printf('The final velocity of the hauler is %dkm/h', Vf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: Sample_Problem_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('degree_rad.sci',-1)\n", +"\n", +"//Given that\n", +"M = 1 //(say) to directly get the answer\n", +"Mc = 0.30*M\n", +"Vc = [5*cos(dtor(40)), 5*sin(dtor(40))]\n", +"Mb = 0.20*M\n", +"Ma = 0.50*M\n", +"\n", +"//Sample Problem 9-7\n", +"printf('**Sample Problem 9-7**\n')\n", +"deff('[f] = eq_maker(V)', 'f = Ma*V(1)*[cos(dtor(140)),sin(dtor(140))] + Mb*V(2)*[0,-1] + Mc*Vc')\n", +"V= fsolve([0,0], eq_maker)\n", +"printf('The velocity of A is %dm/s & velocity of B is %fm/s after the collision in the given directions', V(1), V(2))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: Sample_Problem_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"Mi = 850 //in kg\n", +"R = 2.3 //kg/s\n", +"Vrel = 2800 //in kg\n", +"\n", +"//Sample Problem 9-8a\n", +"printf('**Sample Problem 9-8a**\n')\n", +"T = R*Vrel\n", +"printf('The Thrust force rocket engine provide is equal to %dN\n', T)\n", +"\n", +"//Sample Problem 9-8b\n", +"printf('\n**Sample Problem 9-8b**\n')\n", +"a = T/Mi\n", +"printf('The initial acceleration of rocket is %fm/s^2\n', a)\n", +"\n", +"//Sample Problem 9-8c\n", +"printf('\n**Sample Problem 9-8c**\n')\n", +"Mf = 180 //in kg\n", +"Vf = Vrel * log(Mi/Mf)\n", +"printf('The final velocity of the rocket is %fm/s', Vf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: Sample_Problem_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"m = 4.0* 10^-6 //in kg\n", +"l = 0.77 * 10^-3 //in meter\n", +"h = 0.30 //in m\n", +"g = 9.8 //in m/s^2\n", +"\n", +"//Sample Problem 9-9\n", +"printf('**Sample Problem 9-9**\n')\n", +"//Using Work-Energy theorem\n", +"//F * l = mgh\n", +"F = m* g* h/l\n", +"printf('The external force on the betal is %fN', F)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |