summaryrefslogtreecommitdiff
path: root/Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb')
-rw-r--r--Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb224
1 files changed, 224 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb b/Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb
new file mode 100644
index 0000000..29da3f6
--- /dev/null
+++ b/Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb
@@ -0,0 +1,224 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 27: Current and Resistance"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.1: Sample_Problem_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"rate = 450*10^-6 //in m^3/s\n",
+"e = 1.6*10^-19\n",
+"Na = 6.023*10^23\n",
+"M = 18*10^-3 //in kg/mol\n",
+"density = 1000 //in kg/m^3\n",
+"\n",
+"//Sample Problem 27-1\n",
+"printf('**Sample Problem 27-1**\n')\n",
+"n = 10\n",
+"i = e*n*Na/M*density*rate\n",
+"printf('The current of negative charge is equal to %eA', i)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.2: Sample_Problem_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"R = 2*10^-3 //in meter\n",
+"J = 2*10^5 //in A/m^2\n",
+"\n",
+"//Sample Problem 27-2a\n",
+"printf('**Sample Problem 27-2a**\n')\n",
+"//As current density is uniform\n",
+"A = %pi*(R^2 - (R/2)^2)\n",
+"I = J*A\n",
+"printf('The current flowing through the outer portion is %fA\n', I)\n",
+"\n",
+"//Sample Problem 27-2b\n",
+"printf('\n**Sample Problem 27-2b**\n')\n",
+"a = 3*10^11 //in SI unit\n",
+"Iv = integrate('a*r^2*2*%pi*r', 'r', R/2, R)\n",
+"printf('Now the current will be %fA', Iv)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.3: Sample_Problem_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"r = 900*10^-6 //in m\n",
+"i = 17*10^-3 //in A\n",
+"e = 1.6*10^-19 //in C\n",
+"densityCopper = 8.96*10^3 //in kg/m^3\n",
+"M = 63.54*10^-3 //in kg/mol\n",
+"Na = 6.023*10^23\n",
+"\n",
+"//Sample Problem 27-3\n",
+"printf('**Sample Problem 27-3**\n')\n",
+"A = %pi*r^2\n",
+"J = i/A\n",
+"n = densityCopper/M*Na\n",
+"Vd = J/(n*e)\n",
+"printf('The drift speed is %em/s', Vd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.4: Sample_Problem_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"l = 1.2*10^-2 //in meter\n",
+"b = 1.2*10^-2 //in meter\n",
+"h = 15*10^-2 //in meter\n",
+"resistivityIron = 9.68*10^-8 //in ohm.m\n",
+"\n",
+"//Sample Problem 27-4(1)\n",
+"printf('**Sample Problem 27-4(1)**\n')\n",
+"R1 = resistivityIron*h/(l*b)\n",
+"printf('The resistance of the block is equal to %eOhm\n', R1)\n",
+"\n",
+"//Sample Problem 27-4(2)\n",
+"printf('\n**Sample Problem 27-4(2)**\n')\n",
+"R2 = resistivityIron*l/(b*h)\n",
+"printf('The resistance of the block is equal to %eOhm', R2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.5: Sample_Problem_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"e = 1.6*10^-19 //in C\n",
+"Re = 1.69*10^-8 //in Ohm.m\n",
+"n = 8.49*10^28\n",
+"m = 9.1*10^-31 //mass of electron in kg\n",
+"Veff = 1.6*10^6 //in m/s\n",
+"\n",
+"//Sample Problem 27-5a\n",
+"printf('**Sample Problem 27-5a**\n')\n",
+"//resistivity = m/(n*e^2*t)\n",
+"t = m/(n*e^2*Re)\n",
+"printf('The mean free time between two collision is %es\n', t)\n",
+"\n",
+"//Sample Problem 27-5b\n",
+"printf('\n**Sample Problem 27-5b**\n')\n",
+"lambda = Veff*t\n",
+"printf('The mean free path is equal to %em', lambda)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.6: Sample_Problem_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"R = 72 //in Ohm\n",
+"V = 120 //in volts\n",
+"\n",
+"//Sample Problem 27-6\n",
+"printf('**Sample Problem 27-6**\n')\n",
+"H1 = V^2/R\n",
+"printf('The Power dissipated in first case is equal to %dW\n', H1)\n",
+"H2 = V^2/(R/2) * 2\n",
+"printf('The Power dissipated in second case is equal to %dW\n', H2)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}