diff options
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb')
-rw-r--r-- | Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb | 224 |
1 files changed, 224 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb b/Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb new file mode 100644 index 0000000..29da3f6 --- /dev/null +++ b/Fundamental_Of_Physics_by_D_Haliday/27-Current_and_Resistance.ipynb @@ -0,0 +1,224 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 27: Current and Resistance" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.1: Sample_Problem_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"rate = 450*10^-6 //in m^3/s\n", +"e = 1.6*10^-19\n", +"Na = 6.023*10^23\n", +"M = 18*10^-3 //in kg/mol\n", +"density = 1000 //in kg/m^3\n", +"\n", +"//Sample Problem 27-1\n", +"printf('**Sample Problem 27-1**\n')\n", +"n = 10\n", +"i = e*n*Na/M*density*rate\n", +"printf('The current of negative charge is equal to %eA', i)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.2: Sample_Problem_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"R = 2*10^-3 //in meter\n", +"J = 2*10^5 //in A/m^2\n", +"\n", +"//Sample Problem 27-2a\n", +"printf('**Sample Problem 27-2a**\n')\n", +"//As current density is uniform\n", +"A = %pi*(R^2 - (R/2)^2)\n", +"I = J*A\n", +"printf('The current flowing through the outer portion is %fA\n', I)\n", +"\n", +"//Sample Problem 27-2b\n", +"printf('\n**Sample Problem 27-2b**\n')\n", +"a = 3*10^11 //in SI unit\n", +"Iv = integrate('a*r^2*2*%pi*r', 'r', R/2, R)\n", +"printf('Now the current will be %fA', Iv)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.3: Sample_Problem_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"r = 900*10^-6 //in m\n", +"i = 17*10^-3 //in A\n", +"e = 1.6*10^-19 //in C\n", +"densityCopper = 8.96*10^3 //in kg/m^3\n", +"M = 63.54*10^-3 //in kg/mol\n", +"Na = 6.023*10^23\n", +"\n", +"//Sample Problem 27-3\n", +"printf('**Sample Problem 27-3**\n')\n", +"A = %pi*r^2\n", +"J = i/A\n", +"n = densityCopper/M*Na\n", +"Vd = J/(n*e)\n", +"printf('The drift speed is %em/s', Vd)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.4: Sample_Problem_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"l = 1.2*10^-2 //in meter\n", +"b = 1.2*10^-2 //in meter\n", +"h = 15*10^-2 //in meter\n", +"resistivityIron = 9.68*10^-8 //in ohm.m\n", +"\n", +"//Sample Problem 27-4(1)\n", +"printf('**Sample Problem 27-4(1)**\n')\n", +"R1 = resistivityIron*h/(l*b)\n", +"printf('The resistance of the block is equal to %eOhm\n', R1)\n", +"\n", +"//Sample Problem 27-4(2)\n", +"printf('\n**Sample Problem 27-4(2)**\n')\n", +"R2 = resistivityIron*l/(b*h)\n", +"printf('The resistance of the block is equal to %eOhm', R2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.5: Sample_Problem_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"e = 1.6*10^-19 //in C\n", +"Re = 1.69*10^-8 //in Ohm.m\n", +"n = 8.49*10^28\n", +"m = 9.1*10^-31 //mass of electron in kg\n", +"Veff = 1.6*10^6 //in m/s\n", +"\n", +"//Sample Problem 27-5a\n", +"printf('**Sample Problem 27-5a**\n')\n", +"//resistivity = m/(n*e^2*t)\n", +"t = m/(n*e^2*Re)\n", +"printf('The mean free time between two collision is %es\n', t)\n", +"\n", +"//Sample Problem 27-5b\n", +"printf('\n**Sample Problem 27-5b**\n')\n", +"lambda = Veff*t\n", +"printf('The mean free path is equal to %em', lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.6: Sample_Problem_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"R = 72 //in Ohm\n", +"V = 120 //in volts\n", +"\n", +"//Sample Problem 27-6\n", +"printf('**Sample Problem 27-6**\n')\n", +"H1 = V^2/R\n", +"printf('The Power dissipated in first case is equal to %dW\n', H1)\n", +"H2 = V^2/(R/2) * 2\n", +"printf('The Power dissipated in second case is equal to %dW\n', H2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |