diff options
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/14-Gravitation.ipynb')
-rw-r--r-- | Fundamental_Of_Physics_by_D_Haliday/14-Gravitation.ipynb | 323 |
1 files changed, 323 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/14-Gravitation.ipynb b/Fundamental_Of_Physics_by_D_Haliday/14-Gravitation.ipynb new file mode 100644 index 0000000..f19df24 --- /dev/null +++ b/Fundamental_Of_Physics_by_D_Haliday/14-Gravitation.ipynb @@ -0,0 +1,323 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Gravitation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Sample_Problem_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec ('Gravitation.sci',-1)\n", +"\n", +"//Given that\n", +"m1 = 6 //kg\n", +"m2 = 4 //kg\n", +"m3 = 4 //kg\n", +"a = 2 * (10^-2)\n", +"\n", +"//Sample Problem 14-1\n", +"printf('**Sample Problem 14-1**\n')\n", +"//F1 = F12 + F13\n", +"F12 = [0,-GForce(m1,m2,a)]\n", +"F13 = [GForce(m1,m3,2*a),0]\n", +"F1 = F12 + F13\n", +"printf('The magnitude of net force is approximately equal to %e N', norm(F1))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: Sample_Problem_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('Gravitation.sci',-1)\n", +"exec('degree_rad.sci', -1)\n", +"\n", +"//Given that\n", +"//masses in kg\n", +"m1 = 8\n", +"m2 = 2\n", +"m3 = 2\n", +"m4 = 2\n", +"m5 = 2\n", +"a = 2*(10^-2); //in meter\n", +"Theta = dtor(30) //in radians\n", +"\n", +"//Sample Problem 14-2\n", +"printf('**Sample Problem 14-2**\n')\n", +"//The net force will be equal to the vector eum of all the forces acting on the particle due to the rest of the particles i.e F1 = F12 + F13 + F14 + F15\n", +"F12 = [GForce(m1,m2,(2*a))*sin(Theta), GForce(m1,m2,(2*a))*cos(Theta)]\n", +"F13 = [GForce(m1,m3,a)*sin(Theta), -GForce(m1,m3,a)*cos(Theta)]\n", +"F14 = [-GForce(m1,m4,(2*a))*sin(Theta), -GForce(m1,m4,(2*a))*cos(Theta)]\n", +"F15 = [-GForce(m1,m5,a)*sin(Theta),-GForce(m1,m5,a)*cos(Theta)]\n", +"F1 = F12 + F13 + F14 + F15\n", +"printf('The net force on particle 1 is approimately equal to %e N', norm(F1))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3_a: Sample_Problem_3a.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec ('Gravitation.sci',-1)\n", +"\n", +"//Given that\n", +"r = 6.77 * 10^6 //in meter\n", +"dr = 1.7 //in meter\n", +"\n", +"//Sample Problem 3a\n", +"printf('**Sample Problem 3a**\n')\n", +"dg = -2 * G * Me * dr /(r^3)\n", +"printf('The difference in acceleration is approximately equal to %e m/sec*sec', dg)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3_b: Sample_Problem_3b.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec ('Gravitation.sci',-1)\n", +"\n", +"//variavles with their values\n", +"Mh = 1.99 * 10^31 //in kg\n", +"R = 6.77 * 10^6 //in meter\n", +"DR = 1.7 //in meter\n", +"\n", +"//Sample Problem 3b\n", +"printf('**Sample Problem 3b**\n')\n", +"//the difference in gravitational acceleration is given by\n", +"DG = -2 * G * Mh * DR /(R^3)\n", +"printf('The difference in acceleration is approximately equal to %em/s^2', DG)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: Sample_Problem_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec ('Gravitation.sci',-1)\n", +"//Given that\n", +"Vi = 1.2 * 10^4 //in m/sec\n", +"d = 10*Re;\n", +"m = 10 //let say it will mass cancel out later\n", +"//Sample Problem 5\n", +"printf('**Sample Problem 5**\n')\n", +"//we know that E(initial) = E(final)\n", +"//=> Ki + Ui = Kf + Uf\n", +"//K = .5*m*Vi*Vi (Kinetic Energy)\n", +"//U = gravitational potential (Potential Energy)\n", +"Ki = .5*m*Vi*Vi; \n", +"Ui = GPotential(m,Me,d);\n", +"Uf = GPotential(m,Me,Re);\n", +"Kf = Ki + Ui -Uf;\n", +"Vf = sqrt(2*Kf/m);\n", +"printf('The final velocity of the asteroid is equal to %e m/sec', Vf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: Sample_Problem_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec ('Gravitation.sci',-1)\n", +"\n", +"//Given that\n", +"T = 76 * 365 * 24 * 60 * 60 //time period in seconds (converting from years)\n", +"\n", +"//Sample Problem 6a\n", +"printf('**Sample Problem 6a**\n')\n", +"//We know that Ra + Re = 2*a\n", +"Rp = 8.9 * 10^10 //in meter\n", +"a = KeplerRadius(Ms,T)\n", +"//therefore\n", +"Ra = 2*a -Rp //in meter\n", +"printf('The Aphelion distance is equal to %em\n', Ra)\n", +"\n", +"//Sample Problem 6b\n", +"printf('\n**Sample Problem 6b**\n')\n", +"//we know that e*a = a - Rp\n", +"e = 1 - Rp/a\n", +"printf('The eccentricity of the path is %e ', e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: Sample_Problem_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec ('Gravitation.sci',-1)\n", +"\n", +"//Given that\n", +"//Both the stars are moving around the centre of mass of the two particale system\n", +"//m1 = mass of visible star\n", +"//m2 = mass of invisible star\n", +"//r1 = distance of m1 from center of mass\n", +"//r2 = distance of m2 from center of mass\n", +"//r = r1+r2 distance between both the stars\n", +"//we have G*m1*m2/(r*r) = m1*v1*v1/r1 = m2*v2*v2/r2 ....1\n", +"v1 = 270*10^3 //in meter/sec\n", +"T = 1.7 * 24 * 60 * 60 //in s\n", +"m1 = 6* Ms \n", +"\n", +"//Sample Problem 7\n", +"printf('**Sample Problem 7**\n')\n", +"//m2 = ?\n", +"//using definition of center of mass\n", +"// we have r = r1 * (m1 + m2)/m2 ....2\n", +"//& 2*pi*r1/v1 = T ....3\n", +"//therefore\n", +"r1 = v1*T/(2*%pi); //from equation 3\n", +"//from equation 1 & 2\n", +"//G*(m2^3)/((r1*(m1+m2))^2) = v1*v1/r1\n", +"//we have a polynomial equation in order 3 \n", +"//(m2^3)/(m1+m2)^2 = v1*v1*r1/G\n", +"temp = v1*v1*r1/G; //say\n", +"//=> -m2^3 + temp*m2^2 + 2*m1*temp*m2+ m1*m1*temp\n", +"solpoly = (poly([-m1*m1,-2*m1,-1,1/temp],'x','c'));\n", +"sol = roots(solpoly,'e');\n", +"printf('The mass of the invisible star is equal to %e kg\n', sol(1))\n", +"printf('The mass of the invisible star is equal to %f times the mass of Sun', sol(1)/Ms)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: Sample_Problem_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec ('Gravitation.sci',-1)\n", +"\n", +"//Given that\n", +"m = 7.20 //in kg\n", +"h = 350 * 10^3 //altitude in meter\n", +"\n", +"//Sample Problem 8a\n", +"printf('**Sample Problem 8a**\n')\n", +"//mechanical energy E = K + U\n", +"//E = - G * M * m /(2* r)\n", +"E = .5*GPotential(m,Me,(h+Re))\n", +"printf('The total energy at the given altitude is %e joule\n',E)\n", +"\n", +"\n", +"//Sample Problem 8b\n", +"printf('\n**Sample Problem 8b**\n')\n", +"//here the k = 0\n", +"E0 = GPotential(m,Me,Re)\n", +"printf('The total energy on the launchpad is %e joule\n',E0)\n", +"deltaE = E - E0;\n", +"printf('The differencein both the energy %e joule',deltaE)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |