diff options
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb')
-rw-r--r-- | Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb | 341 |
1 files changed, 341 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb b/Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb new file mode 100644 index 0000000..46a1c52 --- /dev/null +++ b/Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb @@ -0,0 +1,341 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Rotation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.10: Sample_Problem_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"m = 1 //(say)\n", +"R = 0.15 //in meter\n", +"L = 2.0 * R\n", +"g = 9.8 //in m/s^2\n", +"\n", +"//Sample Problem 11-10\n", +"printf('**Sample Problem 11-10**\n')\n", +"I = 0.5*m*R^2 + m*L^2/12 + m*(L/2+R)^2\n", +"deltaU = m* g* (L + 2*R)\n", +"//deltaK = 0.5*I*w^2\n", +"//therefore-\n", +"w = sqrt(deltaU/(0.5*I))\n", +"printf('The angular speed is equal to %frad/s', w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: Sample_Problem_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"t = poly(0, 't')\n", +"A = -1.00-0.600*t+0.250*t^2\n", +"\n", +"//Sample Problem 11-1a\n", +"printf('**Sample Problem 11-1a**\n')\n", +"Ts = [-3:0.5:6]\n", +"As = horner(A, Ts)\n", +"xset('window', 1)\n", +"xtitle( 'angular variable for the disk v/s time', 'time(sec)', 'Y-axis')\n", +"plot(Ts, As, 'm-o')\n", +"\n", +"//Sample Problem 11-1b\n", +"printf('\n**Sample Problem 11-1b**\n')\n", +"To = roots(derivat(A))\n", +"printf('At t=%fsec, theta approaches its minimum value equal to %f\n', To, horner(A, To))\n", +"\n", +"//Sample Problem 11-1c\n", +"printf('\n**Sample Problem 11-1c**\n')\n", +"Os = horner(derivat(A), Ts)\n", +"plot(Ts, Os, 'r-+')\n", +"legend('theta(rad)', 'omega(rad/s)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: Sample_Problem_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"alpha = 0.335 //in rad/s^2\n", +"Wo = -4.6 //in rad/s\n", +"Ao = 0 //in rad\n", +"Af = 5* 2*%pi //in rad\n", +"\n", +"//Sample Problem 11-2a\n", +"printf('**Sample Problem 11-2a**\n')\n", +"//Using newton's second equation of motion\n", +"t = poly(0, 't')\n", +"p = Ao + Wo*t + 0.5*alpha*t^2 - Af\n", +"to = roots(p)\n", +"printf('At time equal to %fsec, the reference line will be at given position\n', to(2))\n", +"\n", +"//Sample Problem 11-2c\n", +"printf('\n**Sample Problem 11-2c**\n')\n", +"p = Wo + alpha*t\n", +"ts = roots(p)\n", +"printf('At time equal to %fsec, the disk momentarily stops', ts)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: Sample_Problem_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"W1 = 3.40 //in rad/s\n", +"W2 = 2.00 //in rad/s\n", +"rev_taken = 20\n", +"\n", +"//Sample Problem 11-3a\n", +"printf('**Sample Problem 11-3a**\n')\n", +"angle_traversed = 2*%pi*rev_taken\n", +"//Using newton's third equation of motion\n", +"//Wf^2 = Wi^2 + 2*alpha*theta\n", +"alpha = (W2^2 - W1^2)/(2*angle_traversed)\n", +"printf('The angular acceleration during the stop is %frads^2\n', alpha)\n", +"\n", +"//Sample Problem 11-3b\n", +"printf('\n**Sample Problem 11-3b**\n')\n", +"//Using newton's first equation of motion\n", +"time_taken = (W2 - W1)/alpha\n", +"printf('The time taken in decreasing the speed is %fsec', time_taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: Sample_Problem_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"r = 15 //in meter\n", +"g = 9.8 //in m.s^2\n", +"a = 11 * g //in m.s^2\n", +"\n", +"//Sample Problem 11-4a\n", +"printf('**Sample Problem 11-4a**\n')\n", +"w = sqrt(a/r)\n", +"printf('The angular speed should be %frad/s\n', w)\n", +"\n", +"//Sample Problem 11-4b\n", +"printf('\n**Sample Problem 11-4b**\n')\n", +"t = 120 //in sec\n", +"alpha = w/t\n", +"at = alpha*r\n", +"printf('The tangential acceleration will be %fm/s^2', at)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: Sample_Problem_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"M = 272 //in kg\n", +"R = 38*10^-2 //in meter\n", +"w = 14000* 2*%pi/60 //in rad/s\n", +"\n", +"///Sample Problem 11-6\n", +"printf('**Sample Problem 11-6**\n')\n", +"I = 0.5* M* R^2\n", +"E = 0.5* I* w^2\n", +"printf('The energy released during the explosion is %eJ', E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.7: Sample_Problem_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"M = 2.5 //in kg\n", +"R = 0.20 //i meter\n", +"m = 1.2 //in kg\n", +"g = 9.8 //in m/s^2\n", +"I = 0.5*M*R^2\n", +"\n", +"//Sample Problem 11-7\n", +"printf('**Sample Problem 11-7**\n')\n", +"//mg - T = ma\n", +"//T*R = I*a/R\n", +"//T = I*a/R^2\n", +"//on adding =>\n", +"a = m*g/(m+I/R^2)\n", +"T = m*(g-a)\n", +"alpha = a/R\n", +"printf('The acceleration of the block is %fm/s^2\n', a)\n", +"printf('The angular acceleration of the pulley is %frad/s^2\n', alpha)\n", +"printf('The tension in the string is %fN', T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.8: Sample_Problem_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"M = 80 //in kg\n", +"d1 = 0.30 //in meter\n", +"alpha = 6 //in rad/s^2\n", +"I = 15 //in kg.m^2\n", +"g = 9.8 //in m/s^2\n", +"\n", +"//Sample Problem 11-8a\n", +"printf('**Sample Problem 11-8a**\n')\n", +"F = I*alpha/d1\n", +"printf('The magnitude of F is %fN\n', F)\n", +"\n", +"//Sample Problem 11-8b\n", +"printf('\n**Sample Problem 11-8b**\n')\n", +"d2 = 0.12 //in meter\n", +"//F*d1 - M*g*d2 = I*alpha\n", +"F = I*alpha + M*g*d2\n", +"F = F/d1\n", +"printf('The magnitude of F in second case is %fN', F)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.9: Sample_Problem_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('Example11_7.sce', -1)\n", +"clc\n", +"\n", +"//Given that\n", +"t = 2.5 //in sec\n", +"\n", +"//Sample Problem 11-9\n", +"printf('\n**Sample Problem 11-9**\n')\n", +"w = 0 + alpha*t\n", +"RE = 0.5* I* w^2\n", +"printf('The rotational kinetic energy of the disk will be %fJ', RE)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |