summaryrefslogtreecommitdiff
path: root/Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb')
-rw-r--r--Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb341
1 files changed, 341 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb b/Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb
new file mode 100644
index 0000000..46a1c52
--- /dev/null
+++ b/Fundamental_Of_Physics_by_D_Haliday/11-Rotation.ipynb
@@ -0,0 +1,341 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Rotation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.10: Sample_Problem_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"m = 1 //(say)\n",
+"R = 0.15 //in meter\n",
+"L = 2.0 * R\n",
+"g = 9.8 //in m/s^2\n",
+"\n",
+"//Sample Problem 11-10\n",
+"printf('**Sample Problem 11-10**\n')\n",
+"I = 0.5*m*R^2 + m*L^2/12 + m*(L/2+R)^2\n",
+"deltaU = m* g* (L + 2*R)\n",
+"//deltaK = 0.5*I*w^2\n",
+"//therefore-\n",
+"w = sqrt(deltaU/(0.5*I))\n",
+"printf('The angular speed is equal to %frad/s', w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Sample_Problem_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"t = poly(0, 't')\n",
+"A = -1.00-0.600*t+0.250*t^2\n",
+"\n",
+"//Sample Problem 11-1a\n",
+"printf('**Sample Problem 11-1a**\n')\n",
+"Ts = [-3:0.5:6]\n",
+"As = horner(A, Ts)\n",
+"xset('window', 1)\n",
+"xtitle( 'angular variable for the disk v/s time', 'time(sec)', 'Y-axis')\n",
+"plot(Ts, As, 'm-o')\n",
+"\n",
+"//Sample Problem 11-1b\n",
+"printf('\n**Sample Problem 11-1b**\n')\n",
+"To = roots(derivat(A))\n",
+"printf('At t=%fsec, theta approaches its minimum value equal to %f\n', To, horner(A, To))\n",
+"\n",
+"//Sample Problem 11-1c\n",
+"printf('\n**Sample Problem 11-1c**\n')\n",
+"Os = horner(derivat(A), Ts)\n",
+"plot(Ts, Os, 'r-+')\n",
+"legend('theta(rad)', 'omega(rad/s)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Sample_Problem_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"alpha = 0.335 //in rad/s^2\n",
+"Wo = -4.6 //in rad/s\n",
+"Ao = 0 //in rad\n",
+"Af = 5* 2*%pi //in rad\n",
+"\n",
+"//Sample Problem 11-2a\n",
+"printf('**Sample Problem 11-2a**\n')\n",
+"//Using newton's second equation of motion\n",
+"t = poly(0, 't')\n",
+"p = Ao + Wo*t + 0.5*alpha*t^2 - Af\n",
+"to = roots(p)\n",
+"printf('At time equal to %fsec, the reference line will be at given position\n', to(2))\n",
+"\n",
+"//Sample Problem 11-2c\n",
+"printf('\n**Sample Problem 11-2c**\n')\n",
+"p = Wo + alpha*t\n",
+"ts = roots(p)\n",
+"printf('At time equal to %fsec, the disk momentarily stops', ts)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Sample_Problem_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"W1 = 3.40 //in rad/s\n",
+"W2 = 2.00 //in rad/s\n",
+"rev_taken = 20\n",
+"\n",
+"//Sample Problem 11-3a\n",
+"printf('**Sample Problem 11-3a**\n')\n",
+"angle_traversed = 2*%pi*rev_taken\n",
+"//Using newton's third equation of motion\n",
+"//Wf^2 = Wi^2 + 2*alpha*theta\n",
+"alpha = (W2^2 - W1^2)/(2*angle_traversed)\n",
+"printf('The angular acceleration during the stop is %frads^2\n', alpha)\n",
+"\n",
+"//Sample Problem 11-3b\n",
+"printf('\n**Sample Problem 11-3b**\n')\n",
+"//Using newton's first equation of motion\n",
+"time_taken = (W2 - W1)/alpha\n",
+"printf('The time taken in decreasing the speed is %fsec', time_taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: Sample_Problem_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"r = 15 //in meter\n",
+"g = 9.8 //in m.s^2\n",
+"a = 11 * g //in m.s^2\n",
+"\n",
+"//Sample Problem 11-4a\n",
+"printf('**Sample Problem 11-4a**\n')\n",
+"w = sqrt(a/r)\n",
+"printf('The angular speed should be %frad/s\n', w)\n",
+"\n",
+"//Sample Problem 11-4b\n",
+"printf('\n**Sample Problem 11-4b**\n')\n",
+"t = 120 //in sec\n",
+"alpha = w/t\n",
+"at = alpha*r\n",
+"printf('The tangential acceleration will be %fm/s^2', at)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Sample_Problem_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"M = 272 //in kg\n",
+"R = 38*10^-2 //in meter\n",
+"w = 14000* 2*%pi/60 //in rad/s\n",
+"\n",
+"///Sample Problem 11-6\n",
+"printf('**Sample Problem 11-6**\n')\n",
+"I = 0.5* M* R^2\n",
+"E = 0.5* I* w^2\n",
+"printf('The energy released during the explosion is %eJ', E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.7: Sample_Problem_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"M = 2.5 //in kg\n",
+"R = 0.20 //i meter\n",
+"m = 1.2 //in kg\n",
+"g = 9.8 //in m/s^2\n",
+"I = 0.5*M*R^2\n",
+"\n",
+"//Sample Problem 11-7\n",
+"printf('**Sample Problem 11-7**\n')\n",
+"//mg - T = ma\n",
+"//T*R = I*a/R\n",
+"//T = I*a/R^2\n",
+"//on adding =>\n",
+"a = m*g/(m+I/R^2)\n",
+"T = m*(g-a)\n",
+"alpha = a/R\n",
+"printf('The acceleration of the block is %fm/s^2\n', a)\n",
+"printf('The angular acceleration of the pulley is %frad/s^2\n', alpha)\n",
+"printf('The tension in the string is %fN', T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.8: Sample_Problem_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"M = 80 //in kg\n",
+"d1 = 0.30 //in meter\n",
+"alpha = 6 //in rad/s^2\n",
+"I = 15 //in kg.m^2\n",
+"g = 9.8 //in m/s^2\n",
+"\n",
+"//Sample Problem 11-8a\n",
+"printf('**Sample Problem 11-8a**\n')\n",
+"F = I*alpha/d1\n",
+"printf('The magnitude of F is %fN\n', F)\n",
+"\n",
+"//Sample Problem 11-8b\n",
+"printf('\n**Sample Problem 11-8b**\n')\n",
+"d2 = 0.12 //in meter\n",
+"//F*d1 - M*g*d2 = I*alpha\n",
+"F = I*alpha + M*g*d2\n",
+"F = F/d1\n",
+"printf('The magnitude of F in second case is %fN', F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.9: Sample_Problem_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"exec('Example11_7.sce', -1)\n",
+"clc\n",
+"\n",
+"//Given that\n",
+"t = 2.5 //in sec\n",
+"\n",
+"//Sample Problem 11-9\n",
+"printf('\n**Sample Problem 11-9**\n')\n",
+"w = 0 + alpha*t\n",
+"RE = 0.5* I* w^2\n",
+"printf('The rotational kinetic energy of the disk will be %fJ', RE)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}