summaryrefslogtreecommitdiff
path: root/Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb')
-rw-r--r--Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb510
1 files changed, 510 insertions, 0 deletions
diff --git a/Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb b/Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb
new file mode 100644
index 0000000..269d88e
--- /dev/null
+++ b/Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb
@@ -0,0 +1,510 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: HYDRAULIC MOTORS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1_a: find_pressure_developed_to_overcome_load.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:To determine pressure developed to overcome load\n",
+"// Given:\n",
+"// outer radius of rotor:\n",
+"R_R=0.5; //in\n",
+"// outer radius of vane:\n",
+"R_V=1.5; //in\n",
+"// width of vane:\n",
+"L=1; //in\n",
+"// Torque Load:\n",
+"T=1000; //in.lb"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1_b: SOLUTION_pressure_developed_to_overcome_load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('7_1_soln.sce')\n",
+"filename=pathname+filesep()+'7_1_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// volumetric displacement,\n",
+"V_D=%pi*((R_V^2)-(R_R^2))*L; //in^3\n",
+"// pressure developed to overcome load,\n",
+"p=2*%pi*T/V_D; //psi\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The pressure developed to overcome load is %.0f psi.',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_a: determine_theoretical_horsepower_of_hydraulic_motor.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:Refer Example 7-2 for Problem Description \n",
+"// Given:\n",
+"// volumetric displacement:\n",
+"V_D=5; //in^3\n",
+"// pressure rating:\n",
+"p=1000; //psi\n",
+"// theoretical flow-rate of pump:\n",
+"Q_T=10; //gpm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_b: SOLUTION_theoretical_horsepower_of_hydraulic_motor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('7_2_soln.sce')\n",
+"filename=pathname+filesep()+'7_2_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// motor speed,\n",
+"N=231*Q_T/V_D; //rpm\n",
+"// Theoretical torque,\n",
+"T_T=floor(V_D*p/(2*%pi)); //in.lb\n",
+"// Theoretical horsepower,\n",
+"HP_T=T_T*N/63000; //HP\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The motor Speed is %.0f rpm.',N)\n",
+"printf('\n The motor Theoretical torque is %.0f in.lb.',T_T)\n",
+"printf('\n The motor Theoretical horsepower is %.2f HP.',HP_T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3_a: find_actual_horsepower_delivered_by_motor.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:Refer Example 7-3 for Problem Description \n",
+"// Given:\n",
+"// volumetric displacement:\n",
+"V_D=10; //in^3\n",
+"// pressure rating:\n",
+"p=1000; //psi\n",
+"// speed of motor:\n",
+"N=2000; //rpm\n",
+"// actual flow-rate of motor:\n",
+"Q_A=95; //gpm\n",
+"// actual torque delivered by motor:\n",
+"T_A=1500; //in.lb"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3_b: SOLUTION_actual_horsepower_delivered_by_motor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('7_3_soln.sce')\n",
+"filename=pathname+filesep()+'7_3_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// theoretical flow-rate,\n",
+"Q_T=V_D*N/231; //gpm\n",
+"// volumetric efficiency,\n",
+"eta_v=(Q_T/Q_A)*100; //%\n",
+"// theoretical torque,\n",
+"T_T=(V_D*p/(2*%pi)); //in.lb\n",
+"// mechanical efficiency,\n",
+"eta_m=(T_A/T_T)*100; //%\n",
+"// overall efficiency,\n",
+"eta_o=(eta_v/100)*(eta_m/100)*100; //%\n",
+"eta_o=fix(eta_o)+(fix(floor((eta_o-fix(eta_o))*10))/10); //% ,rounding off the answer\n",
+"// actual horsepower delivered by motor,\n",
+"HP_A=T_A*N/63000; //HP\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The volumetric efficiency is %.1f percent.',eta_v)\n",
+"printf('\n The mechanical efficiency is %.1f percent.',eta_m)\n",
+"printf('\n The overall efficiency is %.1f percent.',eta_o)\n",
+"printf('\n The actual horsepower delivered by the motor is %.1f HP.',HP_A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4_a: find_motor_displacement_and_output_torque.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:Refer Example 7-4 for Problem Description \n",
+"// Given:\n",
+"// operating pressure:\n",
+"p=1000; //psi\n",
+"// volumetric displacement of pump:\n",
+"V_D_pump=5; //in^3\n",
+"// speed of pump:\n",
+"N_pump=500; //rpm\n",
+"// volumetric efficiency of pump:\n",
+"eta_v_pump=82; //%\n",
+"// mechanical efficiency of pump:\n",
+"eta_m_pump=88; //%\n",
+"// speed of motor:\n",
+"N_motor=400; //rpm\n",
+"// volumetric efficiency of motor:\n",
+"eta_v_motor=92; //%\n",
+"// mechanical efficiency of motor:\n",
+"eta_m_motor=90; //%"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4_b: SOLUTION_motor_displacement_and_output_torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('7_4_soln.sce')\n",
+"filename=pathname+filesep()+'7_4_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// pump theoretical flow-rate,\n",
+"Q_T_pump=V_D_pump*N_pump/231; //gpm\n",
+"// pump actual flow rate,\n",
+"Q_A_pump=Q_T_pump*(eta_v_pump/100); //gpm\n",
+"// motor theoretical flow-rate,\n",
+"Q_T_motor=Q_A_pump*(eta_v_motor/100); //gpm ,motor actual flow-rate = pump actual flow rate\n",
+"// motor displacement,\n",
+"V_D_motor=Q_T_motor*231/N_motor; //in^3\n",
+"// hydraulic HP delivered to motor,\n",
+"HHP_motor=p*Q_A_pump/1714; //HP\n",
+"// brake HP delivered by motor,\n",
+"BHP_motor=HHP_motor*(eta_v_motor/100)*(eta_m_motor/100); //HP\n",
+"BHP_motor=fix(BHP_motor)+(fix(floor((BHP_motor-fix(BHP_motor))*100))/100); //HP ,rounding off the answer\n",
+"// torque delivered by motor,\n",
+"T_motor=(BHP_motor*63000/N_motor); //in.lb\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The Displacement of motor is %.2f in^3.',V_D_motor)\n",
+"printf('\n The Motor output torque is %.0f in.lb.',T_motor)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5_a: find_motor_theoretical_power_in_SI.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:Refer Example 7-5 for Problem Description \n",
+"// Given:\n",
+"// volumetric displacement:\n",
+"V_D=0.082; //L\n",
+"// pressure rating:\n",
+"p=70; //bar\n",
+"// theoretical flow-rate of pump:\n",
+"Q_T=0.0006; //m^3/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5_b: SOLUTION_motor_theoretical_power_in_SI.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('7_5_soln.sce')\n",
+"filename=pathname+filesep()+'7_5_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// motor speed,\n",
+"N=(Q_T*60)/(V_D*10^-3); //rpm\n",
+"// Theoretical torque,\n",
+"T_T=((V_D*10^-3)*(p*10^5))/(2*%pi); //Nm\n",
+"// Theoretical power,\n",
+"HP_T=T_T*N*2*%pi/(60*1000); //kW\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The motor Speed is %.0f rpm.',N)\n",
+"printf('\n The motor Theoretical torque is %.1f Nm.',T_T)\n",
+"printf('\n The motor Theoretical power is %.2f kW.',HP_T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6_a: find_actual_KW_delivered_by_motor.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:Refer Example 7-6 for Problem Description \n",
+"// Given:\n",
+"// volumetric displacement:\n",
+"V_D=164; //cm^3\n",
+"// pressure rating:\n",
+"p=70; //bar\n",
+"// speed of motor:\n",
+"N=2000; //rpm\n",
+"// actual flow-rate of motor:\n",
+"Q_A=0.006; //m^3/s\n",
+"// actual torque delivered by motor:\n",
+"T_A=170; //Nm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6_b: SOLUTION_actual_KW_delivered_by_motor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('7_6_soln.sce')\n",
+"filename=pathname+filesep()+'7_6_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// theoretical flow-rate,\n",
+"Q_T=(V_D*10^-6)*(N/60); //m^3/s\n",
+"Q_T=fix(Q_T)+(fix(ceil((Q_T-fix(Q_T))*10^5))/10^5); //m^3/s ,rounding off the answer\n",
+"// volumetric efficiency,\n",
+"eta_v=(Q_T/Q_A)*100; //%\n",
+"// theoretical torque,\n",
+"T_T=((V_D*10^-6)*(p*10^5))/(2*%pi); //Nm\n",
+"// mechanical efficiency,\n",
+"eta_m=(T_A/T_T)*100; //%\n",
+"// overall efficiency,\n",
+"eta_o=(eta_v/100)*(eta_m/100)*100; //%\n",
+"eta_o=fix(eta_o)+(fix(floor((eta_o-fix(eta_o))*10))/10); //% ,rounding off the answer\n",
+"// actual horsepower delivered by motor,\n",
+"HP_A=(T_A*N*2*%pi)/(60*1000); //kW\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The volumetric efficiency is %.1f percent.',eta_v)\n",
+"printf('\n The mechanical efficiency is %.1f percent.',eta_m)\n",
+"printf('\n The overall efficiency is %.1f percent.',eta_o)\n",
+"printf('\n The actual horsepower delivered by the motor is %.1f kW.',HP_A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7_a: find_motor_output_torque_in_SI.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:Refer Example 7-7 for Problem Description \n",
+"// Given:\n",
+"// operating pressure:\n",
+"p=70; //bar\n",
+"// volumetric displacement of pump:\n",
+"V_D_pump=82; //cm^3\n",
+"// speed of pump:\n",
+"N_pump=500; //rpm\n",
+"// volumetric efficiency of pump:\n",
+"eta_v_pump=82; //%\n",
+"// mechanical efficiency of pump:\n",
+"eta_m_pump=88; //%\n",
+"// speed of motor:\n",
+"N_motor=400; //rpm\n",
+"// volumetric efficiency of motor:\n",
+"eta_v_motor=92; //%\n",
+"// mechanical efficiency of motor:\n",
+"eta_m_motor=90; //%"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7_b: SOLUTION_motor_output_torque_in_SI.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('7_7_soln.sce')\n",
+"filename=pathname+filesep()+'7_7_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// pump theoretical flow-rate,\n",
+"Q_T_pump=(V_D_pump*10^-6)*(N_pump/60); //m^3/s\n",
+"// pump actual flow rate,\n",
+"Q_A_pump=Q_T_pump*(eta_v_pump/100); //m^3/s\n",
+"// motor theoretical flow-rate,\n",
+"Q_T_motor=Q_A_pump*(eta_v_motor/100); //m^3/s ,motor actual flow-rate = pump actual-flow rate\n",
+"// motor displacement,\n",
+"V_D_motor=(Q_T_motor/(N_motor/60))*10^6; //cm^3\n",
+"// hydraulic HP delivered to motor,\n",
+"HHP_motor=(p*10^5)*Q_A_pump; //W\n",
+"// brake HP delivered by motor,\n",
+"BHP_motor=HHP_motor*(eta_v_motor/100)*(eta_m_motor/100); //W\n",
+"BHP_motor=fix(BHP_motor)+(fix(floor((BHP_motor-fix(BHP_motor))*100))/100); //W ,rounding off the answer\n",
+"// torque delivered by motor,\n",
+"T_motor=(BHP_motor/N_motor)*(60/(2*%pi)); //Nm\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The Displacement of motor is %.1f cm^3.',V_D_motor)\n",
+"printf('\n The Motor output torque is %.1f Nm.',T_motor)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}