diff options
Diffstat (limited to 'Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb')
-rw-r--r-- | Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb | 510 |
1 files changed, 510 insertions, 0 deletions
diff --git a/Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb b/Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb new file mode 100644 index 0000000..269d88e --- /dev/null +++ b/Fluid_Power_With_Applications_by_A_Esposito/7-HYDRAULIC_MOTORS.ipynb @@ -0,0 +1,510 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: HYDRAULIC MOTORS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1_a: find_pressure_developed_to_overcome_load.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Aim:To determine pressure developed to overcome load\n", +"// Given:\n", +"// outer radius of rotor:\n", +"R_R=0.5; //in\n", +"// outer radius of vane:\n", +"R_V=1.5; //in\n", +"// width of vane:\n", +"L=1; //in\n", +"// Torque Load:\n", +"T=1000; //in.lb" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1_b: SOLUTION_pressure_developed_to_overcome_load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"pathname=get_absolute_file_path('7_1_soln.sce')\n", +"filename=pathname+filesep()+'7_1_data.sci'\n", +"exec(filename)\n", +"// Solution:\n", +"// volumetric displacement,\n", +"V_D=%pi*((R_V^2)-(R_R^2))*L; //in^3\n", +"// pressure developed to overcome load,\n", +"p=2*%pi*T/V_D; //psi\n", +"// Results:\n", +"printf('\n Results: ') \n", +"printf('\n The pressure developed to overcome load is %.0f psi.',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2_a: determine_theoretical_horsepower_of_hydraulic_motor.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Aim:Refer Example 7-2 for Problem Description \n", +"// Given:\n", +"// volumetric displacement:\n", +"V_D=5; //in^3\n", +"// pressure rating:\n", +"p=1000; //psi\n", +"// theoretical flow-rate of pump:\n", +"Q_T=10; //gpm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2_b: SOLUTION_theoretical_horsepower_of_hydraulic_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"pathname=get_absolute_file_path('7_2_soln.sce')\n", +"filename=pathname+filesep()+'7_2_data.sci'\n", +"exec(filename)\n", +"// Solution:\n", +"// motor speed,\n", +"N=231*Q_T/V_D; //rpm\n", +"// Theoretical torque,\n", +"T_T=floor(V_D*p/(2*%pi)); //in.lb\n", +"// Theoretical horsepower,\n", +"HP_T=T_T*N/63000; //HP\n", +"// Results:\n", +"printf('\n Results: ') \n", +"printf('\n The motor Speed is %.0f rpm.',N)\n", +"printf('\n The motor Theoretical torque is %.0f in.lb.',T_T)\n", +"printf('\n The motor Theoretical horsepower is %.2f HP.',HP_T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_a: find_actual_horsepower_delivered_by_motor.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Aim:Refer Example 7-3 for Problem Description \n", +"// Given:\n", +"// volumetric displacement:\n", +"V_D=10; //in^3\n", +"// pressure rating:\n", +"p=1000; //psi\n", +"// speed of motor:\n", +"N=2000; //rpm\n", +"// actual flow-rate of motor:\n", +"Q_A=95; //gpm\n", +"// actual torque delivered by motor:\n", +"T_A=1500; //in.lb" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_b: SOLUTION_actual_horsepower_delivered_by_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"pathname=get_absolute_file_path('7_3_soln.sce')\n", +"filename=pathname+filesep()+'7_3_data.sci'\n", +"exec(filename)\n", +"// Solution:\n", +"// theoretical flow-rate,\n", +"Q_T=V_D*N/231; //gpm\n", +"// volumetric efficiency,\n", +"eta_v=(Q_T/Q_A)*100; //%\n", +"// theoretical torque,\n", +"T_T=(V_D*p/(2*%pi)); //in.lb\n", +"// mechanical efficiency,\n", +"eta_m=(T_A/T_T)*100; //%\n", +"// overall efficiency,\n", +"eta_o=(eta_v/100)*(eta_m/100)*100; //%\n", +"eta_o=fix(eta_o)+(fix(floor((eta_o-fix(eta_o))*10))/10); //% ,rounding off the answer\n", +"// actual horsepower delivered by motor,\n", +"HP_A=T_A*N/63000; //HP\n", +"// Results:\n", +"printf('\n Results: ') \n", +"printf('\n The volumetric efficiency is %.1f percent.',eta_v)\n", +"printf('\n The mechanical efficiency is %.1f percent.',eta_m)\n", +"printf('\n The overall efficiency is %.1f percent.',eta_o)\n", +"printf('\n The actual horsepower delivered by the motor is %.1f HP.',HP_A)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4_a: find_motor_displacement_and_output_torque.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Aim:Refer Example 7-4 for Problem Description \n", +"// Given:\n", +"// operating pressure:\n", +"p=1000; //psi\n", +"// volumetric displacement of pump:\n", +"V_D_pump=5; //in^3\n", +"// speed of pump:\n", +"N_pump=500; //rpm\n", +"// volumetric efficiency of pump:\n", +"eta_v_pump=82; //%\n", +"// mechanical efficiency of pump:\n", +"eta_m_pump=88; //%\n", +"// speed of motor:\n", +"N_motor=400; //rpm\n", +"// volumetric efficiency of motor:\n", +"eta_v_motor=92; //%\n", +"// mechanical efficiency of motor:\n", +"eta_m_motor=90; //%" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4_b: SOLUTION_motor_displacement_and_output_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"pathname=get_absolute_file_path('7_4_soln.sce')\n", +"filename=pathname+filesep()+'7_4_data.sci'\n", +"exec(filename)\n", +"// Solution:\n", +"// pump theoretical flow-rate,\n", +"Q_T_pump=V_D_pump*N_pump/231; //gpm\n", +"// pump actual flow rate,\n", +"Q_A_pump=Q_T_pump*(eta_v_pump/100); //gpm\n", +"// motor theoretical flow-rate,\n", +"Q_T_motor=Q_A_pump*(eta_v_motor/100); //gpm ,motor actual flow-rate = pump actual flow rate\n", +"// motor displacement,\n", +"V_D_motor=Q_T_motor*231/N_motor; //in^3\n", +"// hydraulic HP delivered to motor,\n", +"HHP_motor=p*Q_A_pump/1714; //HP\n", +"// brake HP delivered by motor,\n", +"BHP_motor=HHP_motor*(eta_v_motor/100)*(eta_m_motor/100); //HP\n", +"BHP_motor=fix(BHP_motor)+(fix(floor((BHP_motor-fix(BHP_motor))*100))/100); //HP ,rounding off the answer\n", +"// torque delivered by motor,\n", +"T_motor=(BHP_motor*63000/N_motor); //in.lb\n", +"// Results:\n", +"printf('\n Results: ') \n", +"printf('\n The Displacement of motor is %.2f in^3.',V_D_motor)\n", +"printf('\n The Motor output torque is %.0f in.lb.',T_motor)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5_a: find_motor_theoretical_power_in_SI.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Aim:Refer Example 7-5 for Problem Description \n", +"// Given:\n", +"// volumetric displacement:\n", +"V_D=0.082; //L\n", +"// pressure rating:\n", +"p=70; //bar\n", +"// theoretical flow-rate of pump:\n", +"Q_T=0.0006; //m^3/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5_b: SOLUTION_motor_theoretical_power_in_SI.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"pathname=get_absolute_file_path('7_5_soln.sce')\n", +"filename=pathname+filesep()+'7_5_data.sci'\n", +"exec(filename)\n", +"// Solution:\n", +"// motor speed,\n", +"N=(Q_T*60)/(V_D*10^-3); //rpm\n", +"// Theoretical torque,\n", +"T_T=((V_D*10^-3)*(p*10^5))/(2*%pi); //Nm\n", +"// Theoretical power,\n", +"HP_T=T_T*N*2*%pi/(60*1000); //kW\n", +"// Results:\n", +"printf('\n Results: ') \n", +"printf('\n The motor Speed is %.0f rpm.',N)\n", +"printf('\n The motor Theoretical torque is %.1f Nm.',T_T)\n", +"printf('\n The motor Theoretical power is %.2f kW.',HP_T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6_a: find_actual_KW_delivered_by_motor.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Aim:Refer Example 7-6 for Problem Description \n", +"// Given:\n", +"// volumetric displacement:\n", +"V_D=164; //cm^3\n", +"// pressure rating:\n", +"p=70; //bar\n", +"// speed of motor:\n", +"N=2000; //rpm\n", +"// actual flow-rate of motor:\n", +"Q_A=0.006; //m^3/s\n", +"// actual torque delivered by motor:\n", +"T_A=170; //Nm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6_b: SOLUTION_actual_KW_delivered_by_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"pathname=get_absolute_file_path('7_6_soln.sce')\n", +"filename=pathname+filesep()+'7_6_data.sci'\n", +"exec(filename)\n", +"// Solution:\n", +"// theoretical flow-rate,\n", +"Q_T=(V_D*10^-6)*(N/60); //m^3/s\n", +"Q_T=fix(Q_T)+(fix(ceil((Q_T-fix(Q_T))*10^5))/10^5); //m^3/s ,rounding off the answer\n", +"// volumetric efficiency,\n", +"eta_v=(Q_T/Q_A)*100; //%\n", +"// theoretical torque,\n", +"T_T=((V_D*10^-6)*(p*10^5))/(2*%pi); //Nm\n", +"// mechanical efficiency,\n", +"eta_m=(T_A/T_T)*100; //%\n", +"// overall efficiency,\n", +"eta_o=(eta_v/100)*(eta_m/100)*100; //%\n", +"eta_o=fix(eta_o)+(fix(floor((eta_o-fix(eta_o))*10))/10); //% ,rounding off the answer\n", +"// actual horsepower delivered by motor,\n", +"HP_A=(T_A*N*2*%pi)/(60*1000); //kW\n", +"// Results:\n", +"printf('\n Results: ') \n", +"printf('\n The volumetric efficiency is %.1f percent.',eta_v)\n", +"printf('\n The mechanical efficiency is %.1f percent.',eta_m)\n", +"printf('\n The overall efficiency is %.1f percent.',eta_o)\n", +"printf('\n The actual horsepower delivered by the motor is %.1f kW.',HP_A)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7_a: find_motor_output_torque_in_SI.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Aim:Refer Example 7-7 for Problem Description \n", +"// Given:\n", +"// operating pressure:\n", +"p=70; //bar\n", +"// volumetric displacement of pump:\n", +"V_D_pump=82; //cm^3\n", +"// speed of pump:\n", +"N_pump=500; //rpm\n", +"// volumetric efficiency of pump:\n", +"eta_v_pump=82; //%\n", +"// mechanical efficiency of pump:\n", +"eta_m_pump=88; //%\n", +"// speed of motor:\n", +"N_motor=400; //rpm\n", +"// volumetric efficiency of motor:\n", +"eta_v_motor=92; //%\n", +"// mechanical efficiency of motor:\n", +"eta_m_motor=90; //%" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7_b: SOLUTION_motor_output_torque_in_SI.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"pathname=get_absolute_file_path('7_7_soln.sce')\n", +"filename=pathname+filesep()+'7_7_data.sci'\n", +"exec(filename)\n", +"// Solution:\n", +"// pump theoretical flow-rate,\n", +"Q_T_pump=(V_D_pump*10^-6)*(N_pump/60); //m^3/s\n", +"// pump actual flow rate,\n", +"Q_A_pump=Q_T_pump*(eta_v_pump/100); //m^3/s\n", +"// motor theoretical flow-rate,\n", +"Q_T_motor=Q_A_pump*(eta_v_motor/100); //m^3/s ,motor actual flow-rate = pump actual-flow rate\n", +"// motor displacement,\n", +"V_D_motor=(Q_T_motor/(N_motor/60))*10^6; //cm^3\n", +"// hydraulic HP delivered to motor,\n", +"HHP_motor=(p*10^5)*Q_A_pump; //W\n", +"// brake HP delivered by motor,\n", +"BHP_motor=HHP_motor*(eta_v_motor/100)*(eta_m_motor/100); //W\n", +"BHP_motor=fix(BHP_motor)+(fix(floor((BHP_motor-fix(BHP_motor))*100))/100); //W ,rounding off the answer\n", +"// torque delivered by motor,\n", +"T_motor=(BHP_motor/N_motor)*(60/(2*%pi)); //Nm\n", +"// Results:\n", +"printf('\n Results: ') \n", +"printf('\n The Displacement of motor is %.1f cm^3.',V_D_motor)\n", +"printf('\n The Motor output torque is %.1f Nm.',T_motor)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |