summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke
diff options
context:
space:
mode:
Diffstat (limited to 'Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke')
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/1-Fluid_Statics.ipynb488
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/2-Continuity_Momentum_and_Energy.ipynb326
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/3-Laminar_Flow_and_Lubrication.ipynb417
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/4-Dimensional_Analysis.ipynb65
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/5-Flow_measurement_by_differential_head.ipynb361
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/6-Tank_drainage_and_variable_head_flow.ipynb311
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/7-Open_channels_notches_and_weirs.ipynb348
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/8-Pipe_friction_and_turbulent_flow.ipynb534
-rw-r--r--Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/9-Pumps.ipynb399
9 files changed, 3249 insertions, 0 deletions
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/1-Fluid_Statics.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/1-Fluid_Statics.ipynb
new file mode 100644
index 0000000..d8e3f4c
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/1-Fluid_Statics.ipynb
@@ -0,0 +1,488 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Fluid Statics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"dp=20*10^3; //N/m^2\n",
+"rho_Hg=13600; //kg/m^3\n",
+"rho=700; //kg/m^3\n",
+"g=9.81; //m/s^2\n",
+"d=0.02; //m\n",
+"\n",
+"H=dp/(rho_Hg-rho)/g;\n",
+"\n",
+"V=%pi/4*d^2*H;\n",
+"disp('Quantity of mercury to be removed =')\n",
+"disp(V)\n",
+"disp('m^3')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: 11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho=800; //kg/m^3\n",
+"g=9.81; //m/s^2\n",
+"L=0.12;\n",
+"theta=%pi/180*20; // radians\n",
+"\n",
+"dp=rho*g*L*sin(theta);\n",
+"disp('The gauge pressure across the filter =')\n",
+"disp(dp)\n",
+"disp('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho=924; //kg/m^3\n",
+"g=9.81; //m/s^2\n",
+"H=2; //m\n",
+"d=2; //depth in m\n",
+"\n",
+"p=rho*g*H;\n",
+"a=d*H;\n",
+"\n",
+"F=p*a/2;\n",
+"disp('Total force exerted over the wall =')\n",
+"disp(F)\n",
+"disp('N')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: 12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"mc=100; //kg\n",
+"g=9.81; //m/s^2\n",
+"rho=1000; //kg/m^3\n",
+"rho_c=7930; //kg/m^3\n",
+"\n",
+"m=mc*rho/rho_c;\n",
+"\n",
+"F=mc*g-m*g;\n",
+"disp('The tension in the cable =')\n",
+"disp(F)\n",
+"disp('N')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: 13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho=1000;\n",
+"x=0.06;\n",
+"rho_0=800;\n",
+"x_0=0.04;\n",
+"\n",
+"L=(rho*x-rho_0*x_0)/(rho-rho_0);\n",
+"\n",
+"rho_L=900;\n",
+"x_L=L-rho/rho_L*(L-x);\n",
+"disp('Length of the stem above the liquid of SG 0.9 =')\n",
+"disp(x_L)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: 14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"m_s=5*10^6; //kg\n",
+"T2=4.5; //m\n",
+"T1=3; //m\n",
+"rho_hc=950; //kg/m^3\n",
+"Q=125; //m^3/h\n",
+"\n",
+"m_hc=m_s*(T2/T1-1);\n",
+"disp('Quantity delivered =')\n",
+"disp(m_hc)\n",
+"disp('kg')\n",
+"\n",
+"t=m_hc/rho_hc/Q;\n",
+"disp('Time taken =')\n",
+"disp(t)\n",
+"disp('hours')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"p_v=50*10^3; //N/m^2\n",
+"r=1; //m\n",
+"p_atm=101.3*10^3; //N/m^2\n",
+"rho=1000; //kg/m^3\n",
+"H=2.5; //m\n",
+"g=9.81; //m/s^2\n",
+"\n",
+"F=p_v*%pi*r^2;\n",
+"disp('Total vertical force tending to lift the dome =')\n",
+"disp(F)\n",
+"disp('N')\n",
+"\n",
+"p=p_atm+p_v+rho*g*H;\n",
+"disp('Absolute pressure at the bottom of the vessel =')\n",
+"disp(p)\n",
+"disp('N/m^2')\n",
+"\n",
+"Fd=(p_v+rho*g*H)*%pi*r^2+rho*g*2*%pi*r^2/3;\n",
+"disp('Downward force imposed by the gas and liquid =')\n",
+"disp(Fd)\n",
+"disp('N')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"a1=0.3; //m^2\n",
+"m=1000; //kg\n",
+"a2=0.003; //m^2\n",
+"rho_oil=750; //kg/m^3\n",
+"H=2; //m\n",
+"g=9.81; //m/s^2\n",
+"\n",
+"F1=m*g;\n",
+"F2=a2*(F1/a1-rho_oil*g*H);\n",
+"disp('The force on the plunger =')\n",
+"disp(F2)\n",
+"disp('N')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho_0=800; //kg/m^3\n",
+"rho_aq=1100; //kg/m^3\n",
+"\n",
+"// rho_0*g*H=rho_aq*g*(H-0.5);\n",
+"\n",
+"H=0.5*rho_aq/(rho_aq-rho_0);\n",
+"disp('H=')\n",
+"disp(H)\n",
+"disp('m')\n",
+"\n",
+"// For a fixed length of chamber of 3 m, the interface between the two phases is determined from the pressure in the chamber and discharge point.\n",
+"// rho_0*g*H1+rho_aq*g*H2=rho_aq*g*(H-0.5);\n",
+"// H=H1+H2\n",
+"\n",
+"rho_0=600; //kg/m^3\n",
+"\n",
+"H1=0.5*rho_aq/(rho_aq-rho_0);\n",
+"disp('The lowest possible position of the inteiface in the chamber below the overflow.')\n",
+"disp(H1)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho_o=900; //kg/m^3\n",
+"rho_n=1070; //kg/m^3\n",
+"H=1; //m\n",
+"g=9.81; //m/s^2\n",
+"dp=10*10^3; //N/m^2\n",
+"\n",
+"// H=H1+H2\n",
+"\n",
+"H1=(dp-rho_n*g*H)/(rho_o-rho_n)/g;\n",
+"disp('The position of the interface between the legs =')\n",
+"disp(H1)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"dp=22*10^3; //N/m^2\n",
+"g=9.81; //m/s^2\n",
+"H=1.5; //m\n",
+"rho=1495; //kg/m^3\n",
+"rho_s=1270; //kg/m^3\n",
+"rho_c=2698; //kg/m^3\n",
+"\n",
+"p=dp/g/H;\n",
+"disp('the density of the solution with crystal =')\n",
+"disp(p)\n",
+"disp('kg/m^3')\n",
+"\n",
+"// rho=f1*rho_s+f2*rho_c\n",
+"// f1+f2=1\n",
+"\n",
+"f2=(rho-rho_s)/(rho_c-rho_s);\n",
+"disp('The fraction of crystals =')\n",
+"disp(f2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"p_atm=101.3*10^3; // N/m^2\n",
+"rho=1000; // kg/m^3\n",
+"g=9.81; // m/s^2\n",
+"H1=3; //m\n",
+"a=0.073; // N/m\n",
+"r1=5*10^(-4); //m\n",
+"\n",
+"p1=p_atm+rho*g*H1+2*a/r1;\n",
+"\n",
+"// p2=p_atm+rho*g*H2+2*a/r2;\n",
+"\n",
+"// p1*4/3*%pi*r1^3=p2*4/3*%pi*r2^3\n",
+"\n",
+"// Solving above two equations we get\n",
+"r2=0.053; //mm\n",
+"disp('Radius of the bubble =')\n",
+"disp(r2)\n",
+"disp('mm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"H=0.2; //m\n",
+"rho=1000; //kg/m^3\n",
+"rho_Hg=13600; //kg/m^3\n",
+"g=9.81; //m/s^2\n",
+"\n",
+"dp=(rho_Hg-rho)*g*H;\n",
+"disp('Differential pressure =')\n",
+"disp(dp)\n",
+"disp('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"\n",
+"// p1-rho*g*(H+H1)=p2-rho*g*H1-rho_air*g*H\n",
+"\n",
+"rho=1000;\n",
+"g=9.81; // m/s^2\n",
+"H=0.4; //m\n",
+"dp=rho*g*H;\n",
+"disp('Pressure drop in the pipe =')\n",
+"disp(dp)\n",
+"disp('N/m^2')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/2-Continuity_Momentum_and_Energy.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/2-Continuity_Momentum_and_Energy.ipynb
new file mode 100644
index 0000000..9734582
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/2-Continuity_Momentum_and_Energy.ipynb
@@ -0,0 +1,326 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Continuity Momentum and Energy"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Q1=0.02; //m^3/s\n",
+"d1=0.15; //m\n",
+"d2=0.05; //m\n",
+"d3=0.1; //m\n",
+"v2=3; //m/s\n",
+"\n",
+"\n",
+"v3=(4*Q1/%pi-d2^2*v2)/d3^2;\n",
+"disp('velocity at pipe 3 =')\n",
+"disp(v3)\n",
+"disp('m/s')\n",
+"\n",
+"Q3=%pi*d3^2/4*v3;\n",
+"disp('Flowrate at pipe 3 =')\n",
+"disp(Q3)\n",
+"disp('m^3/s')\n",
+"\n",
+"Q2=%pi*d2^2/4*v2;\n",
+"disp('Flowrate at pipe 2')\n",
+"disp(Q2)\n",
+"disp('m^3/s')\n",
+"\n",
+"disp('Velocity at pipe 2')\n",
+"disp(v2)\n",
+"disp('m/s')\n",
+"\n",
+"v1=4*(Q2+Q3)/%pi/d1^2;\n",
+"disp('Velocity at pipe 1 =')\n",
+"disp(v1)\n",
+"disp('m/s')\n",
+"\n",
+"disp('Flowrate at pipe 1')\n",
+"disp(Q1)\n",
+"disp('m^3/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"d1=0.2; //m\n",
+"d2=d1;\n",
+"p1=1*10^5; //N/m^2\n",
+"p2=80*10^3; //N/m^2\n",
+"Q=150; //m^3/h\n",
+"rho=900; //kg/m^3\n",
+"theta1=0; //radians\n",
+"theta2=%pi; //radians\n",
+"\n",
+"a1=%pi*d1^2/4;\n",
+"a2=%pi*d2^2/4;\n",
+"\n",
+"F1=p1*a1; // Upstream force\n",
+"F2=p2*a2; // Downstream force\n",
+"\n",
+"v1=4*Q/3600/%pi/d1^2;\n",
+"v2=v1;\n",
+"\n",
+"flux=rho*Q/3600*v2; //Momentum flux\n",
+"\n",
+"Fx=F1*cos(theta1)-F2*cos(theta2)+flux*(cos(theta2) - cos(theta1));\n",
+"Fy=F1*sin(theta1)-F2*sin(theta2)-flux*(sin(theta2)-sin(theta1));\n",
+"\n",
+"F=sqrt(Fx^2+Fy^2);\n",
+"disp('Force exerted by the liquid on the bend =')\n",
+"disp(F)\n",
+"disp('N')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho=1000; //kg/m^3\n",
+"d=0.05; //m\n",
+"L=500; //m\n",
+"v=1.7; //m/s\n",
+"\n",
+"a=%pi*d^2/4;\n",
+"F=rho*a*L*v;\n",
+"\n",
+"P=F/a/10^3;\n",
+"disp('Average pressure =')\n",
+"disp(P)\n",
+"disp('kN/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"g=9.8; //m/s^2\n",
+"dz=0.2; //m ; dz1=z1-z2=z1-z2\n",
+"rho=1000; //kg/m^3\n",
+"dz1=2; //m ; dz1=z1-z_A\n",
+"dz2=0; //m ; dz2=z1-z_B\n",
+"dz3=-1.5; //m ; dz3=z1-z_C\n",
+"\n",
+"v2=sqrt(2*g*dz);\n",
+"\n",
+"v_A=v2;\n",
+"v_B=v2;\n",
+"v_C=v2;\n",
+"\n",
+"p_A=rho*g*(dz1-v_A^2/2/g);\n",
+"p_B=rho*g*(dz2-v_B^2/2/g);\n",
+"p_C=rho*g*(dz3-v_C^2/2/g);\n",
+"\n",
+"disp('Velocity at pt. A =')\n",
+"disp(v_A)\n",
+"disp('m/s')\n",
+"\n",
+"disp('Velocity at pt. B =')\n",
+"disp(v_B)\n",
+"disp('m/s')\n",
+"\n",
+"disp('Velocity at pt. C =')\n",
+"disp(v_C)\n",
+"disp('m/s')\n",
+"\n",
+"disp('Pressure at pt. A =')\n",
+"disp(p_A)\n",
+"disp('kN/m^2')\n",
+"\n",
+"disp('Pressure at pt. B =')\n",
+"disp(p_B)\n",
+"disp('kN/m^2')\n",
+"\n",
+"disp('Pressure at pt. C =')\n",
+"disp(p_C)\n",
+"disp('kN/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Q=10; // m^3/hr\n",
+"d1=0.05; //m\n",
+"d2=0.1; //m\n",
+"rho=1000; //kg/m^3\n",
+"\n",
+"a1=%pi*d1^2/4;\n",
+"a2=%pi*d2^2/4;\n",
+"\n",
+"v1=Q/3600/a1;\n",
+"v2=(d1/d2)^2*v1;\n",
+"\n",
+"PD=rho*Q/3600*(v1-v2)/a2;\n",
+"disp('Pressure drop =')\n",
+"disp(PD)\n",
+"disp('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Q=100; //m^3/hr\n",
+"d1=0.2; //m\n",
+"d2=0.15; //m\n",
+"p1=80*10^3; //N/m^2\n",
+"rho=1000; //kg/m^3\n",
+"g=9.8; //m/s^2\n",
+"\n",
+"a1=%pi*d1^2/4;\n",
+"a2=%pi*d2^2/4;\n",
+"v1=Q/3600/a1;\n",
+"v2=Q/3600/a2;\n",
+"H_L=0.2*v2^2/2/g;\n",
+"p2=p1+rho/2*(v1^2-v2^2)-rho*g*H_L;\n",
+"\n",
+"F_u=p1*a1; // Upstream force\n",
+"F_d=p2*a2; // Downstream force\n",
+"\n",
+"F_x=rho*Q/3600*(v2-v1)-F_u+F_d;\n",
+"disp('Force required =')\n",
+"disp(F_x)\n",
+"disp('N')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"N=60; //rpm\n",
+"r2=0.25; //m\n",
+"g=9.8; //m/s^2\n",
+"\n",
+"w=2*%pi*N/60;\n",
+"dz_12=(w*r2)^2/2/g; // dz_12=z2-z1\n",
+"c=w*r2^2;\n",
+"dz_23=c^2/2/g/r2^2;// dz_23=z3-z2\n",
+"\n",
+"dz_13=dz_23+dz_12;\n",
+"disp('Total depression =')\n",
+"disp(dz_13)\n",
+"disp('m')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/3-Laminar_Flow_and_Lubrication.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/3-Laminar_Flow_and_Lubrication.ipynb
new file mode 100644
index 0000000..4a4f98a
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/3-Laminar_Flow_and_Lubrication.ipynb
@@ -0,0 +1,417 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Laminar Flow and Lubrication"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho=1000; //kg/m^3\n",
+"u=0.1; //Ns/m^2\n",
+"g=9.81; //m/s^2\n",
+"L=10; //m\n",
+"H=2; //m\n",
+"Q=14/3600; //m^3/s\n",
+"d=0.05; //m\n",
+"\n",
+"dp=rho*g*(L+H) - (128*Q*u*L/%pi/0.05^4);\n",
+"disp('Pressure drop across the valve =')\n",
+"disp(dp)\n",
+"disp('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: 12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Q=3*10^(-6); // m^3/s\n",
+"u=0.001; // Ns/m^2\n",
+"W=1;\n",
+"rho=1000; // kg/m^3\n",
+"g=9.81; // m/s^2\n",
+"d=1.016*10^(-4); // m\n",
+"\n",
+"theta=asind(3*Q*u/W/rho/g/d^3);\n",
+"disp('Exact angle of inclination =')\n",
+"disp(theta)\n",
+"\n",
+"d1=1.25*10^(-4); // m\n",
+"\n",
+"u1=W*rho*g*sind(theta)*(d1^3)/(3*Q);\n",
+"disp('Viscosity of the second liquid =')\n",
+"disp(u1)\n",
+"disp('Ns/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: 17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"u=1.5; // Ns/m^2\n",
+"v=0.5; // m/s\n",
+"H=0.02/2; // m\n",
+"\n",
+"t=-u*3*v/H;\n",
+"disp('The shear stress =')\n",
+"disp(t)\n",
+"disp('N/m^2')\n",
+"disp('It acts in the opposite direction to the flow.')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18: 18.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"N=600/60; // revolutions per sec \n",
+"r=0.025; // m \n",
+"t=400; // N/m^2\n",
+"l=0.002; // m\n",
+"\n",
+"w=2*%pi*N;\n",
+"\n",
+"u=t*l/w/r;\n",
+"disp('Viscosity =')\n",
+"disp(u)\n",
+"disp('Ns/m^2')\n",
+"\n",
+"T=integrate('2*%pi*u*w/l*r^3', 'r', 0, r);\n",
+"disp('Torque =')\n",
+"disp(T)\n",
+"disp('Nm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19: 19.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"u=0.153; //Ns/m^2\n",
+"r=0.05; // m\n",
+"N=30; // rps\n",
+"t=2/10^5; //s\n",
+"L=0.2; // m\n",
+"\n",
+"tau=u*(2*%pi*N*r/t);\n",
+"\n",
+"F=tau*2*%pi*r*L;\n",
+"\n",
+"T=F*r;\n",
+"\n",
+"w=2*%pi*N;\n",
+"P=T*w;\n",
+" \n",
+"disp('The torque on the bearing is found to be ');\n",
+"disp(T);\n",
+"disp('Nm');\n",
+"disp('and the power required to overcome the frictional resistance is ');\n",
+"disp(P);\n",
+"disp('W');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20: 20.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"t=0.0005; // s\n",
+"P=22; // \n",
+"r=300/60; // \n",
+"R_1=0.1; // \n",
+"R_2=0.0625; // \n",
+"\n",
+"w=2*%pi*r;\n",
+"\n",
+"u=2*t*P/(%pi*w^2*((R_1)^4-(R_2)^4));\n",
+"disp('The viscosity of the oil is found to be ');\n",
+"disp(u);\n",
+"disp('Nsm-2.');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Re=2000; \n",
+"d=0.008; //m\n",
+"\n",
+"L1=0.058*Re*d;\n",
+"disp('The furthest distance the fluid can flow into the 8 mm inside diameter pipe before fully developed laminar flow can exist is ');\n",
+"disp(L1);\n",
+"disp('m');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"del_p=90*10^3; // N/m^2\n",
+"d=0.126; // m\n",
+"R=0.126/2; // m\n",
+"u=1.2;\n",
+"L=60; // m\n",
+"Rho=1260;\n",
+"\n",
+"Q=%pi * del_p * R^4 / (8*u*L);\n",
+"disp('The glycerol delivery rate is ');\n",
+"disp(Q);\n",
+"disp('m^3/s');\n",
+"\n",
+"Re=4*Rho*Q/(u*%pi*d);\n",
+"disp('The Reynolds number is ');\n",
+"disp(Re);\n",
+"disp('As Re is below 2000, therefore confirming laminar flow.');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"u=0.015; //Ns/m^2\n",
+"Q=0.004/60; //m^3/s\n",
+"dp=100;\n",
+"rho=1100; //kg/m^3\n",
+"\n",
+"R=(8*u*Q/(%pi*dp))^(1/4);\n",
+"Re=(4*rho*Q/(%pi*u*(2*R)));\n",
+"\n",
+"disp('Diameter of the pipe =')\n",
+"disp(R)\n",
+"disp('m')\n",
+"\n",
+"disp('Reynolds number =')\n",
+"disp(Re)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"u=0.03; //Ns/m^2\n",
+"Q=10^(-7); //m^3/s\n",
+"dp=integrate('8*u*Q/%pi/0.005^4/(1-L)^4', 'L', 0, 0.5)\n",
+"disp('Pressure difference =')\n",
+"disp(dp)\n",
+"disp('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"u=0.1; // Ns/m^2\n",
+"d=0.1; //m\n",
+"R=0.05; // m\n",
+"Rho=900; //kg/m^3\n",
+"\n",
+"v_max=2; // m/s\n",
+"v=v_max/2; // m/s\n",
+"\n",
+"disp('At the pipe wall (r =R), therefore, the shear stress is');\n",
+"Tw=-2*u*v_max/R;\n",
+"disp(Tw);\n",
+"disp('N/m^2');\n",
+"disp('The negative sign indicates that the shear stress is in the opposite direction to flow.');\n",
+"\n",
+"disp('pressure drop per metre length of pipe is');\n",
+"\n",
+"del_p=4*u*v_max/R^2;\n",
+"disp(del_p);\n",
+"disp('N/m');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"u=0.032; // Ns/m^2\n",
+"Re=2000; // maximum value\n",
+"Rho=854;\n",
+"del_p=150; // N/m^2\n",
+"\n",
+"d=(32*u^2*Re/(Rho*del_p))^(1/3);\n",
+"disp('The maximum inside diameter is found to be ')\n",
+"disp(d)\n",
+"disp('m')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/4-Dimensional_Analysis.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/4-Dimensional_Analysis.ipynb
new file mode 100644
index 0000000..59c9adf
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/4-Dimensional_Analysis.ipynb
@@ -0,0 +1,65 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Dimensional Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Rho_full=800; // kg/m^3\n",
+"v_full=1.8; // m/s\n",
+"u_full=9*10^(-4);// Nm/s^2\n",
+"Rho_model=1000; // kg/m^3\n",
+"u_model=10^(-3); // Ns/m^2\n",
+"d_full= 2;\n",
+"d_model=1;\n",
+"del_p_fmodel=4000; // N/m^2\n",
+"\n",
+"v_model = (((Rho_full * v_full)/u_full)/(Rho_model/u_model))*(d_full/d_model);\n",
+"\n",
+"del_p_f=del_p_fmodel*Rho_full*(v_full)^2/Rho_model/(v_model)^2;\n",
+"disp('The pressure drop per unit length in the full-scale pipe is expected to be ')\n",
+"disp(del_p_f)\n",
+"disp('kN/m^2');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/5-Flow_measurement_by_differential_head.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/5-Flow_measurement_by_differential_head.ipynb
new file mode 100644
index 0000000..10d8ed2
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/5-Flow_measurement_by_differential_head.ipynb
@@ -0,0 +1,361 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Flow measurement by differential head"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho_m=840; //kg/m^3\n",
+"g=9.8; //m/s^2\n",
+"H=0.03; //m\n",
+"rho=1.2; //kg//m^3\n",
+"\n",
+"dp=rho_m*g*H;\n",
+"\n",
+"v1=sqrt(2*dp/rho);\n",
+"disp('Velocity =')\n",
+"disp(v1)\n",
+"disp('m/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"r=[0 0.05 0.10 0.15 0.20 0.225 0.25];\n",
+"v=[19 18.6 17.7 16.3 14.2 12.9 0];\n",
+"\n",
+"// We define a new variable dQ=v*2*%pi*r. According to the given values of r, v, we get dQ as follows\n",
+"dQ=[0 5.8 11.1 15.4 17.8 18.2 0];\n",
+"plot(r,dQ)\n",
+"xtitle('', 'Radius', 'v*2*%pi*r')\n",
+"// From the graph area under the curve comes out to be 2.74\n",
+"Q=2.74; // m^3/s\n",
+"disp(' Rate of flow =')\n",
+"disp(Q)\n",
+"disp('m^3/s')\n",
+"\n",
+"d=0.5; // m\n",
+"\n",
+"v=4*Q/%pi/d^2;\n",
+"disp('Average velocity =')\n",
+"disp(v)\n",
+"disp('m/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"d1=0.1; //m\n",
+"rho_Hg=13600; //kg/m^3\n",
+"rho=1000; //kg/m^3\n",
+"g=9.81; //m/s^2\n",
+"H=0.8; //m\n",
+"Cd=0.96;\n",
+"Q=0.025; //m^3/s\n",
+"\n",
+"a=%pi*d1^2/4;\n",
+"dp=(rho_Hg-rho)*g*H;\n",
+"\n",
+"B=((2*dp/(rho*((Q/Cd/a)^2)))+1)^(1/4);\n",
+"\n",
+"d2=d1/B;\n",
+"disp('Throat diameter =')\n",
+"disp(d2)\n",
+"disp('m')\n",
+"\n",
+"// The shortest possible overall length of venturi is therefore an entrance cone of 7.1 cm length (20 degrees), a throat of 2.5 cm(0.25 pipe-diameters) and an exit cone of 19.7 cm (7.5 degrees) giving an overall length of 29.3 cm.\n",
+"\n",
+"L=29.3; //cm\n",
+"disp('Overall Length =')\n",
+"disp(L)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Cd_o=0.65;\n",
+"d=0.05;\n",
+"d_o=0.025;\n",
+"Cd_v=0.95;\n",
+"d_v=0.038;\n",
+"\n",
+"// (Q_o/Cd_o)^2*((d/d_o)^4 - 1)=(Q_v/Cd_v)^2*((d/d_v)^4 - 1)\n",
+"\n",
+"// Q_v=4*Q_o\n",
+"// Q = Q_v + Q_o\n",
+"// Q = 5*Qv\n",
+"Q1=20;\n",
+"Q2=100-Q1;\n",
+"\n",
+"disp('Flow through orifice =')\n",
+"disp(Q1)\n",
+"disp('%')\n",
+"\n",
+"disp('Flow through venturi =')\n",
+"disp(Q2)\n",
+"disp('%')\n",
+"disp('Thus 20 % of the flow passes through the orifice meter while 80 % of the flow passes through the venturi.')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Qa=0.003/60; // m^3/s\n",
+"Ca=20; // g/l\n",
+"Co=0.126; // g/l\n",
+"dp=3700; // N/m^2\n",
+"p=1000; // N/m^2\n",
+"d=0.1; // m\n",
+"\n",
+"a=%pi*d^2/4;\n",
+"Qi=Qa*((Ca-Co)/Co);\n",
+"Q=Qi+Qa;\n",
+"B=10/6;\n",
+"\n",
+"Cd=Q/a/sqrt(2*dp/p/(B^4-1));\n",
+"disp('Coefficient of discharge =')\n",
+"disp(Cd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho=850; // kg/m^3\n",
+"Q=0.056; // m^3/s\n",
+"Cd=0.98;\n",
+"d1=0.2; // m\n",
+"d2=0.1; // m\n",
+"g=9.81; // m/s^2\n",
+"dz=0.3; // m\n",
+"\n",
+"a=%pi*(d1)^2/4;\n",
+"\n",
+"dp=rho/2*((Q/Cd/a)^2*((d1/d2)^4 - 1) + 2*g*(dz));\n",
+"disp('The differential pressure =')\n",
+"disp(dp)\n",
+"disp('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"g=9.81; // m/s^2\n",
+"H=0.5; // m\n",
+"rho_m=1075; // kg/m^3\n",
+"rho=860; // kg/m^3\n",
+"B=0.225/0.075;\n",
+"a1=%pi/4*(0.225)^2;\n",
+"Cd=0.659;\n",
+"\n",
+"v_t=sqrt(2*g*H*(rho_m-rho)/rho/(B^4-1));\n",
+"\n",
+"Q=Cd*a1*v_t;\n",
+"disp('Rate of flow =')\n",
+"disp(Q)\n",
+"disp('m^3/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"m_f=0.03; // kg\n",
+"rho_f=5100; // kg/m^3\n",
+"d_l=0.3; // m\n",
+"d_b=0.22; // m\n",
+"H_tube=0.2; // m\n",
+"Cd=0.6;\n",
+"H=0.1; // m\n",
+"g=9.81; // m/s^2\n",
+"rho=1000; // kg/m^3\n",
+"\n",
+"V_f=m_f/rho_f;\n",
+"\n",
+"theta=2*atan((d_l-d_b)/2/H_tube);\n",
+"\n",
+"m=Cd*H*tan(theta/2)*sqrt(8*V_f*g*rho*(rho_f-rho)*%pi);\n",
+"disp('Mass flowrate =')\n",
+"disp(m)\n",
+"disp('kg/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"d1=0.05; // m\n",
+"d2=0.025; // m\n",
+"Cd=0.97;\n",
+"dp=1200; // N/m^2\n",
+"rho=1000; // kg/m^3\n",
+"H=0.15; // m\n",
+"theta=2; // degrees\n",
+"V_f=10^(-4); // m^3\n",
+"g=9.81; // m/s^2\n",
+"rho_f=8000; // kg/m^3\n",
+"\n",
+"B=d1/d2;\n",
+"a=%pi/4*d1^2;\n",
+"\n",
+"Q=Cd*a*sqrt(2*dp/rho/(B^4-1));\n",
+"disp('Flow rate of water =')\n",
+"disp(Q)\n",
+"disp('m^3/s')\n",
+"\n",
+"Cd=Q/(H/rho*tand(theta/2)*sqrt(8*V_f*g*rho*(rho_f-rho)*%pi));\n",
+"disp('Coefficient of discharge of the rotameter =')\n",
+"disp(Cd)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/6-Tank_drainage_and_variable_head_flow.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/6-Tank_drainage_and_variable_head_flow.ipynb
new file mode 100644
index 0000000..bc9d245
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/6-Tank_drainage_and_variable_head_flow.ipynb
@@ -0,0 +1,311 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Tank drainage and variable head flow"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"H1=1.5; // m\n",
+"V=0.75; // m^3\n",
+"d1=1.2; // m\n",
+"u=0.08; // Ns/m^2\n",
+"L=3; // m\n",
+"rho=1100; // kg/m^3\n",
+"g=9.81; // m/s^2\n",
+"d=0.025; // m\n",
+"\n",
+"a=%pi*d^2/4;\n",
+"A=%pi*d1^2/4;\n",
+"H2=H1-(V/A);\n",
+"\n",
+"t=-32*u*L*A/(a*rho*g*d^2)*log(H2/H1);\n",
+"\n",
+"disp('Time taken =')\n",
+"disp(t)\n",
+"disp('s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Q=5000/3600/24; // m^3 per second\n",
+"C_d=0.6; \n",
+"r=0.01/2; // m\n",
+"g=9.8; // m/s^2\n",
+"H=0.2; // m\n",
+"a_o=%pi*r^2;\n",
+"\n",
+"n=Q/C_d/a_o/sqrt(2*g*H);\n",
+"disp('The number of orifices required are')\n",
+"disp(n);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"x=0.86; // m\n",
+"g=9.8; // m/s\n",
+"y=0.96; // m\n",
+"H=0.2; // m\n",
+"\n",
+"\n",
+"v_act=x*sqrt(g/2/y);\n",
+"\n",
+"v=sqrt(2*g*H);\n",
+"\n",
+"Cv=v_act/v;\n",
+"disp('The coefficient of velocity for the orifice is found to be')\n",
+"disp(Cv);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Vt=1; // m^3\n",
+"d_t=1; // m\n",
+"C_d=0.6; \n",
+"d_o=0.02; // m\n",
+"g=9.8; // m/s^2\n",
+"a_o=%pi*(d_o)^2/4;\n",
+"\n",
+"A=%pi*(d_t)^2/4;\n",
+"\n",
+"H1=4*Vt/%pi/(d_t)^2;\n",
+"\n",
+"t=A/C_d/a_o*sqrt(2*H1/g);\n",
+"disp('Total drainage is found to take ')\n",
+"disp(t)\n",
+"disp(' seconds');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"C_d=0.6;\n",
+"d_o=0.05; // m\n",
+"g=9.8; // m/s^2;\n",
+"R=2; //\n",
+"H1=1.5; // \n",
+"\n",
+"a_o=%pi*d_o^2/4;\n",
+"\n",
+"t=%pi/C_d/a_o/sqrt(2*g)*(4/3*R*H1^(3/2)-2/5*H1^(5/2));\n",
+"disp('The time to drain the tank is found to be ')\n",
+"disp(t);\n",
+"disp('seconds');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Cd=0.62;\n",
+"a=0.01; // m^2\n",
+"g=9.81; // m/s^2\n",
+"H=0.3; // m\n",
+"A1=4*2; // m^2\n",
+"H1=0.3; // m\n",
+"H2=0.1; // m\n",
+"A2=2*2; // m^2\n",
+"\n",
+"Q=Cd*a*sqrt(2*g*H);\n",
+"disp('The rate of flow =')\n",
+"disp(Q)\n",
+"disp('m^3/s')\n",
+"\n",
+"t=2*A1*(H1^(1/2)-H2^(1/2))/(Cd*a*sqrt(2*g)*(1+A1/A2));\n",
+"disp('The time taken to reduce the difference in levels to 10 cm is ')\n",
+"disp(t)\n",
+"disp('s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Qs=0.4; // m^3/s\n",
+"H1=1.5; // m\n",
+"Q=0.2; // m^3/s\n",
+"H2=0.5; // m\n",
+"l=15; // m\n",
+"b=10; // m\n",
+"A=l*b; \n",
+"\n",
+"k=Qs*H1^(-1/2);\n",
+"\n",
+"\n",
+"t=-2*A/k^2 *(Q*log((Q-k*(H2)^0.5)/(Q-k*(H1)^0.5))+k*((H2)^0.5-(H1)^0.5));\n",
+"disp('The time required for the level in the tank to fall to 1 m is ')\n",
+"disp(t)\n",
+"disp('second')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Cd=0.62;\n",
+"d=0.05;\n",
+"a_o=%pi*d^2/4;\n",
+"g=9.81; // m/s^2\n",
+"\n",
+"k=Cd*a_o*sqrt(2*g);\n",
+"\n",
+"// We have got two simultaneous equations\n",
+"\n",
+"// Q-k*0.65^(1/2)=0.1/90*A\n",
+"// Q-k*1.225^(1/2)=0.05/120*A\n",
+"\n",
+"M=[1 -0.1/90;1 -0.05/120];\n",
+"N=[k*0.65^(1/2);k*1.225^(1/2)];\n",
+"\n",
+"X=inv(M)*N;\n",
+"\n",
+"Q=X(1,1);\n",
+"A=X(2,1);\n",
+"\n",
+"disp('The Area of the tank =')\n",
+"disp(A)\n",
+"disp('m^2')\n",
+"\n",
+"disp('Flowrate =')\n",
+"disp(Q)\n",
+"disp('m^3/s')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/7-Open_channels_notches_and_weirs.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/7-Open_channels_notches_and_weirs.ipynb
new file mode 100644
index 0000000..ab8e669
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/7-Open_channels_notches_and_weirs.ipynb
@@ -0,0 +1,348 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Open channels notches and weirs"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Cd=0.62;\n",
+"g=9.81; // m/s^2\n",
+"H=0.03; // m\n",
+"\n",
+"Q=8/15*Cd*sqrt(2*g)*H^(5/2);\n",
+"disp('Rate of flow =')\n",
+"disp(Q)\n",
+"disp('m^3/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: 11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"l=4; // m\n",
+"b=2; // m\n",
+"H1=0.15; // m\n",
+"H2=0.05; // m\n",
+"\n",
+"t=integrate('-l*b/1.5*H^(-5/2)', 'H', H1, H2);\n",
+"disp('Time taken to reduce the head in the the tank =')\n",
+"disp(t)\n",
+"disp('s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l=1; // m\n",
+"b=0.3; // m\n",
+"n=0.014; // s/m^(1/3)\n",
+"i=1/1000;\n",
+"\n",
+"A=l*b;\n",
+"P=2*b+l;\n",
+"m=A/P;\n",
+"\n",
+"Q=A/n*m^(2/3)*sqrt(i);\n",
+"disp('The delivery of water through the channel is found to be ')\n",
+"disp(Q)\n",
+"disp('m^3/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"n=0.015; // m^(-1/3)s\n",
+"i=1;\n",
+"H=[4.0 4.1 4.2 4.13];\n",
+"\n",
+"A=12*H;\n",
+"P=12+2*H;\n",
+"m=A/P;\n",
+"C=m^(1/6)/n;\n",
+"\n",
+"Q=C*A*sqrt(m*i);\n",
+"\n",
+"// An analytical solution for depth H is not possible. It is therefore necessary to use a graphical or trial and error approach.\n",
+"\n",
+"// The corresponding values of A, P, MHD (m), Q are given below as per the taken values of H.\n",
+"A=[48 49.2 50.4 49.56];\n",
+"P=[20 20.2 20.4 20.26];\n",
+"m=[2.4 2.44 2.47 2.45];\n",
+"Q=[57.36 59.38 61.39 59.98];\n",
+"\n",
+"plot(H,Q)\n",
+"\n",
+"r=[4.13 4.13];\n",
+"s=[57 60];\n",
+"plot(r,s,'r')\n",
+"\n",
+"t=[4 4.13];\n",
+"u=[60 60];\n",
+"plot(t,u,'r')\n",
+"\n",
+"xtitle('', 'Depth H', 'Flowrate Q')\n",
+"\n",
+"// Therefore the depth is found to be approximately 4.13\n",
+"\n",
+"depth=4.13; //m\n",
+"disp('Depth = ')\n",
+"disp(depth)\n",
+"disp('m')\n",
+"\n",
+"C1=(2.45)^(1/6)/n;\n",
+"disp('Chezy Coefficient =')\n",
+"disp(C1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Q=300/60; // m^3/s\n",
+"i=1/1600;\n",
+"\n",
+"H=(Q/140*sqrt(2/i))^(2/3);\n",
+"\n",
+"A=2*H^2;\n",
+"disp('The minimum flow area is found to be ')\n",
+"disp(A)\n",
+"disp('m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"d=0.9144; // m\n",
+"C=100; // m^(1/2)s^(-1)\n",
+"R=d/2;\n",
+"\n",
+"H=[0.1 0.15 0.2 0.25 0.201];\n",
+"\n",
+"theta=acos((R-H)/R);\n",
+"A=R^2*(theta-sin(2*theta)/2);\n",
+"P=2*R*theta;\n",
+"m=A/P;\n",
+"\n",
+"// An analytical solution for depth H is not possible. It is therefore necessary to use a graphical or trial and error approach.\n",
+"\n",
+"// The corresponding values of theta, A, P, MHD (m), Q are given below as per the taken values of H.\n",
+"\n",
+"theta=[0.674 0.834 0.973 1.101 0.975];\n",
+"A=[0.039 0.070 0.106 0.146 0.107];\n",
+"P=[0.616 0.763 0.890 1.006 0.891];\n",
+"m=[0.063 0.092 0.119 0.145 0.120];\n",
+"Q=[248.7 543.2 932.2 1412.9 940.0];\n",
+"\n",
+"plot(H,Q)\n",
+"\n",
+"i=[0.201 0.201];\n",
+"j=[0 940];\n",
+"plot(i,j,'r')\n",
+"\n",
+"k=[0 0.201];\n",
+"l=[940 940];\n",
+"plot(k,l,'r')\n",
+"\n",
+"xtitle('', 'Depth H', 'Flowrate Q')\n",
+"\n",
+"Depth=0.201; // m\n",
+"disp('The depth in the channel =')\n",
+"disp(Depth)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Cd=0.56;\n",
+"B=1.2; // m\n",
+"g=9.8; // m/s^2\n",
+"H=0.018; // m\n",
+"\n",
+"Q=2/3*Cd*B*sqrt(2*g)*H^(3/2);\n",
+"disp('The rate of flow of liquid over the weir is ')\n",
+"disp(Q)\n",
+"disp('m^3/h')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"H2=5.5;\n",
+"Q1=217;\n",
+"Q2=34;\n",
+"H1=8.5;\n",
+"\n",
+"H0=(H2*(Q1/Q2)^(2/3)-H1)/((Q1/Q2)^(2/3)-1);\n",
+"disp('The height of the weir crest above the surface of the river is found to be ')\n",
+"disp(H0)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"H=0.07; // average head \n",
+"rate=-0.02/600; // (dH/dt)\n",
+"H1=0.08; // m\n",
+"H2=0.01; // m\n",
+"\n",
+"k=-rate/H^(3/2);\n",
+"\n",
+"t=integrate('-1/k*H^(-3/2)', 'H', H1, H2);\n",
+"disp('Time taken =')\n",
+"disp(t)\n",
+"disp('s')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/8-Pipe_friction_and_turbulent_flow.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/8-Pipe_friction_and_turbulent_flow.ipynb
new file mode 100644
index 0000000..64ba7a6
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/8-Pipe_friction_and_turbulent_flow.ipynb
@@ -0,0 +1,534 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Pipe friction and turbulent flow"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"m=12*10^3/3600; // kg/s\n",
+"Rho=815; // kg/m^3\n",
+"d=0.05; // m\n",
+"e=0.02;\n",
+"d1=50; // m\n",
+"d2=0.038; // m\n",
+"g=9.8; // m\n",
+"\n",
+"v=4*m/Rho/%pi/d^2;\n",
+"\n",
+"f1=1/(2*log10(d1/e)+2.28)^2;\n",
+"\n",
+"L_eq=d1+2*d1*d;\n",
+"\n",
+"H_50mm=4*f1*L_eq*v^2/(d*2*g);\n",
+"\n",
+"v=4*m/(Rho*%pi*d2^2);\n",
+"\n",
+"f2=1/(2*log10(38/e)+2.28)^2;\n",
+"\n",
+"L_eq=d1+2*d1*d2;\n",
+"H_38mm=4*f2*L_eq*v^2/(d2*2*g);\n",
+"\n",
+"Hr=0.2*v^2/(2*g);\n",
+"\n",
+"H_L=H_50mm+H_38mm+Hr;\n",
+"\n",
+"del_p_f=Rho*g*H_L;\n",
+"disp('The total pressure drop due to friction through the pipe system is ')\n",
+"disp(del_p_f);\n",
+"disp('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11: 11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"// H_L=1.2*v^2/2/g\n",
+"\n",
+"// H_L=4*f*L_eq/d*V^2/2/g\n",
+"\n",
+"// L_eq=60*d\n",
+"\n",
+"// H_L=240*f*v^2/2/g\n",
+"// Combining the two equations for head loss \n",
+"// 1.2*v^2/2/g=240*f*v^2/2/g\n",
+"\n",
+"f=1.2/240;\n",
+"disp('Friction factor =')\n",
+"disp(f)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12: 12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"// dp_AB+dp_BC=dp_AD+dp_DC\n",
+"\n",
+"// dp_AD=2*f*rho*v^2*L/d\n",
+"\n",
+"// dp_AD=16600*(3-Q)^2\n",
+"// Likewise \n",
+"// dp_AB=16600*Q^2\n",
+"// dp_BC=16600*(Q+0.5)^2\n",
+"// dp_DC=16600*(2.1-Q)^2\n",
+"// By solving above 5 equations, we get\n",
+"\n",
+"Q=1.175; //litres per second\n",
+"\n",
+"disp('The rate of flow from B to C =')\n",
+"disp(Q+0.5)\n",
+"disp('litres per second')\n",
+"\n",
+"dp_AD=16600*(3-Q)^2;\n",
+"dp_AB=16600*Q^2;\n",
+"dp_BC=16600*(Q+0.5)^2;\n",
+"dp_DC=16600*(2.1-Q)^2;\n",
+"\n",
+"disp('dp_AD =')\n",
+"disp(dp_AD/1000)\n",
+"disp('kN/m^2')\n",
+"\n",
+"disp('dp_AB =')\n",
+"disp(dp_AB/1000)\n",
+"disp('kN/m^2')\n",
+"\n",
+"disp('dp_BC =')\n",
+"disp(dp_BC/1000)\n",
+"disp('kN/m^2')\n",
+"\n",
+"disp('dp_DC =')\n",
+"disp(dp_DC/1000)\n",
+"disp('kN/m^2')\n",
+"\n",
+"\n",
+"disp('The lowest pressure drop is in the pipe connecting C and D')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13: 13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"H2=0.5; //m\n",
+"H1=2; //m\n",
+"A=4; //m^2\n",
+"f=0.005; \n",
+"L=20; //m\n",
+"d=0.025; //m\n",
+"g=9.81; // m/s^2\n",
+"\n",
+"a=%pi*d^2/4;\n",
+"\n",
+"t=integrate('-A*sqrt((4*f*L/d)+2.5)/a/(sqrt(2*g))*(H)^(-1/2)', 'H', H1, H2);\n",
+"disp('Time taken =')\n",
+"disp(t)\n",
+"disp('s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14: 14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"\n",
+"d0=0.15; // m\n",
+"d1=0.1; // m\n",
+"Q=50/3600; // m^3/s\n",
+"f=0.0052;\n",
+"Rho=972;\n",
+"\n",
+"a=%pi/4*((d0)^2-(d1)^2);\n",
+"\n",
+"P=%pi*((d0)+(d1));\n",
+"\n",
+"d_eq=4*a/P;\n",
+"\n",
+"v=Q/a;\n",
+"\n",
+"del_p_f=2*f*Rho*v^2/d_eq;\n",
+"disp('the pressure drop due to friction per metre length of tube is found to be ')\n",
+"disp(del_p_f)\n",
+"disp('Nm^2/m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15: 15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"f=0.005;\n",
+"Q=0.07; // m^3/s\n",
+"g=9.81; // m/s^2\n",
+"\n",
+"H_f=integrate('32*f*(Q)^(2)/(%pi)^(2)/g/(0.3-0.0666*L)^(5)', 'L', 0, 3);\n",
+"disp('Fractional head loss =')\n",
+"disp(H_f)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16: 16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"g=9.81; // m/s^2\n",
+"H=4; // m\n",
+"f=0.006;\n",
+"L=50; // m\n",
+"d=0.1; // m\n",
+"\n",
+"v1=sqrt(2*g*H/(4*f*L/d + 1.3));\n",
+"\n",
+"t=integrate('4/(v1^2-v^2)', 'v', 0, 0.99*v1);\n",
+"disp('Time taken =')\n",
+"disp(t)\n",
+"disp('s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"rho=867; // kg/m^3\n",
+"Q=12/3600; // m^3/s\n",
+"u=7.5*10^(-4); // Ns/m^2\n",
+"L=200; // m\n",
+"H=10; // m\n",
+"g=9.81; // m/s^2\n",
+"\n",
+"d=(H*2*g/(4*0.079*(4*rho*Q/%pi/u)^(-1/4)*L*(4*Q/%pi)^2))^(-4/19);\n",
+"disp('Internal diameter of the pipeline =')\n",
+"disp(d)\n",
+"disp('m')\n",
+"\n",
+"Re=4*rho*Q/%pi/d/u;\n",
+"disp('Re =')\n",
+"disp(Re)\n",
+"disp('The value of Reynolds number lies between 4000 and 10^5, confirming the validity of using the Blasius equation for smooth-walled pipes')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"m=40/60; // kg/s\n",
+"rho=873; // kg/m^3\n",
+"d=0.025; // m\n",
+"u=8.8*10^-4; // Ns/m^2\n",
+"dp=55*10^3; //N/m^2\n",
+"L=18; // m\n",
+"g=9.81; // m/s^2\n",
+"\n",
+"v2=4*m/rho/%pi/d^2;\n",
+"Re=rho*v2*d/u;\n",
+"\n",
+"// According to this value of Re, Prandtl's equation is satisfied. \n",
+"// 1/sqrt(f)=4*log(Re*sqrt(f))-0.4\n",
+"// By trial and error method we get friction factor equal to\n",
+"f=0.0055;\n",
+"\n",
+"H=dp/rho/g + v2^2/2/g + v2^2/2/g*(4*f*L/d+1.5);\n",
+"disp('The minimum allowable height =')\n",
+"disp(H)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Q=15/3600; // m^3/s\n",
+"d=0.05; // m\n",
+"Rho=780;\n",
+"u=1.7*10^(-3); // Ns/m^2\n",
+"f=0.0065;\n",
+"L=100; // m\n",
+"g=9.8; // m^2/s\n",
+"\n",
+"v=4*Q/%pi/d^2;\n",
+"\n",
+"del_pf=2*f*Rho*v^2*L/d;\n",
+"disp('The pressure drop due to friction is ')\n",
+"disp(del_pf);\n",
+"disp('kNm-2')\n",
+"\n",
+"H_f=4*f*L*v^2/(d*2*g);\n",
+"H_exit=v^2/2/g;\n",
+"H_entrance=v^2/4/g;\n",
+"\n",
+"H=H_f+H_exit+H_entrance;\n",
+"disp('and the difference in levels is')\n",
+"disp(H);\n",
+"disp('m');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"f=0.005; \n",
+"L=10; // m\n",
+"d=0.025; // m\n",
+"g=9.81; // m/s^2\n",
+"\n",
+"// H_L=4*f*L/d*v^2/2/g+0.5*v^2/2/g\n",
+"// H_L=8.5*v^2/2/g\n",
+"\n",
+"// By Bernoulli equation we get\n",
+"// H=2.62+9.5*v2^2/2/g\n",
+"\n",
+"// Applying the Bernoulli equation between the liquid surface and discharge point \n",
+"// H_L=33.5*v2^2/2/g\n",
+"\n",
+"// Solving above two we get\n",
+"v2=1.9; // m/s\n",
+"\n",
+"Q=%pi*d^2/4*v2;\n",
+"disp('Rate of flow =')\n",
+"disp(Q)\n",
+"disp('m^3/s')\n",
+"\n",
+"H=2.62+9.5*v2^2/2/g;\n",
+"disp('The minimum allowable height =')\n",
+"disp(H)\n",
+"disp('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"d_A=0.025; // m\n",
+"v_A=1.21; // m/s\n",
+"d_B=0.05; // m\n",
+"v_B=1.71; // m/s\n",
+"\n",
+"Q_A=%pi*d_A^2*v_A/4;\n",
+"disp('The rate of flow through parallel pipes A is ')\n",
+"disp(Q_A);\n",
+"disp('m^3/s')\n",
+"\n",
+"Q_B=%pi*d_B^2*v_B/4;\n",
+"disp('The rate of flow through parallel pipes B is ')\n",
+"disp(Q_B);\n",
+"disp('m^3/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"d2=0.06; // m\n",
+"d1=0.12; // m\n",
+"k=0.44;\n",
+"f=0.05;\n",
+"L1=500; // m\n",
+"g=9.81; // m/s^2\n",
+"\n",
+"// v1=d2^2/d1^2*v2\n",
+"\n",
+"// H_f=4*f*L1/16/d*v2^2/2/g\n",
+"// H_c=k*v2^2/2/g\n",
+"// H_f=4*f*L2/d*v2^2/2/g\n",
+"// H_exit=v2^2/2/g\n",
+"\n",
+"v2=sqrt(30*2*g/173.4);\n",
+"\n",
+"Q=%pi*d2^2/4*v2;\n",
+"disp('The rate of flow =')\n",
+"disp(Q)\n",
+"disp('m^3/s')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/9-Pumps.ipynb b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/9-Pumps.ipynb
new file mode 100644
index 0000000..1a4440b
--- /dev/null
+++ b/Fluid_Mechanics_Worked_Examples_For_Engineers_by_C_Schaschke/9-Pumps.ipynb
@@ -0,0 +1,399 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Pumps"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"dz=10; // z2-z1\n",
+"g=9.81; // m/s^2\n",
+"d=0.05; // m\n",
+"f=0.005; \n",
+"L=100; // m\n",
+"N1=1200; // rpm\n",
+"\n",
+"// H=z2-z1+16*Q^2/2/g/%pi^2/d^4*(4*f*L/d+1)\n",
+"// H=10+5.42*10^5*Q^2\n",
+"\n",
+"Q=[0.000 0.002 0.004 0.006 0.008 0.010];\n",
+"H_p=[40.0 39.5 38.0 35.0 30.0 20.0];\n",
+"H_s=[10.0 12.2 18.7 29.5 44.7 64.2];\n",
+"\n",
+"plot(Q,H_p, 'b')\n",
+"plot(Q,H_s, 'r')\n",
+"xtitle('', 'Flow', 'Head')\n",
+"legend('pump', 'system')\n",
+"\n",
+"a=[0.0066 0.0066];\n",
+"b=[0 33.8];\n",
+"plot(a,b, '--')\n",
+"e=[0 0.0066];\n",
+"f=[33.8 33.8];\n",
+"plot(e,f, '--')\n",
+"\n",
+"i=[0.0049 0.0049];\n",
+"h=[0 23];\n",
+"plot(i,h, '--')\n",
+"l=[0 0.00495];\n",
+"m=[23 23];\n",
+"plot(l,m, '--')\n",
+"\n",
+"// From graph\n",
+"H1=34; // m\n",
+"H2=23; // m\n",
+"Q1=0.0066; // m^3/s\n",
+"Q2=0.00495; // m^3/s\n",
+"\n",
+"disp('Duty point =')\n",
+"disp(Q1)\n",
+"disp('m^3/s')\n",
+"\n",
+"N2=N1*(H2/H1)^(1/2);\n",
+"disp('The speed of the pump to reduce the flow by 25% =')\n",
+"disp(N2)\n",
+"disp('rpm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11: 11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"Q=0.05; // m^3/s\n",
+"v=2; // m/s\n",
+"f=0.005;\n",
+"L_s=5; // m\n",
+"d=0.178; // m\n",
+"g=9.81; // m/s^2 \n",
+"L_d=20; // m\n",
+"p2=1.5*10^5; // N/m^2\n",
+"p1=0.5*10^5; // N/m^2\n",
+"rho=1000; //kg/m^3\n",
+"z2=15; // m\n",
+"z1=5; // m\n",
+"N1=1500/60; // rps\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"d=(4*Q/%pi/v)^(1/2);\n",
+"H_f_s=4*f*L_s/d*v^2/2/g;\n",
+"H_f_d=4*f*L_d/d*v^2/2/g;\n",
+"\n",
+"H=1/(1-0.25)*((p2-p1)/rho/g + v^2/2/g + z2 - z1 + H_f_s + H_f_d);\n",
+"\n",
+"// n=rho*g*Q*H/P\n",
+"\n",
+"Q=[0 5 10 15 20 25];\n",
+"H=[9.25 8.81 7.85 6.48 4.81 2.96];\n",
+"P=[- 0.96 1.03 1.19 1.26 1.45];\n",
+"n=[0 45 75 800 75 50]; \n",
+"\n",
+"H=27.96; // m\n",
+"H1=6.48; // m\n",
+"Q1=0.015; // m^3/s\n",
+"Q=0.05; // m^3/s\n",
+"D1=0.15; // m\n",
+"n=0.80;\n",
+"\n",
+"disp('Differential Head =')\n",
+"disp(H)\n",
+"disp('m')\n",
+"\n",
+"N=N1*(H/H1)^(3/4)*(Q1/Q)^(1/2);\n",
+"\n",
+"D=D1*(Q*N1/Q1/N)^(1/5);\n",
+"disp('The impeller diameter =')\n",
+"disp(D)\n",
+"disp('m')\n",
+"\n",
+"disp('The rotational speed at maximum efficiency =')\n",
+"disp(N)\n",
+"disp('rps')\n",
+"\n",
+"P=rho*g*Q*H/n;\n",
+"disp('Power input to the pump =')\n",
+"disp(P)\n",
+"disp('W')\n",
+"\n",
+"N_s=N1*Q1^(1/2)/H1^(3/4);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.12: 12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"N=2000/60; // rps\n",
+"Q=50/3600; // m^3/s\n",
+"g=9.81; // m/s^2\n",
+"H=5; // m\n",
+"\n",
+"S_n=N*Q^(1/2)/(g*H)^(3/4);\n",
+"disp('Suction specific speed =')\n",
+"disp(S_n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: 14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"A=0.01; // m^2\n",
+"L=0.3; // m\n",
+"N=60/60; // rps\n",
+"V_act=10.6/3600; // m^3/s\n",
+"rho=1000; // kg/m^3\n",
+"g=9.81; // m/s^2\n",
+"Q=10.6/3600; // m^3/s\n",
+"H=15; // m\n",
+"\n",
+"V=A*L*N;\n",
+"\n",
+"Cd=V_act/V;\n",
+"disp('Coefficient of discharge =')\n",
+"disp(Cd)\n",
+"\n",
+"P=rho*g*Q*H;\n",
+"disp('The power required =')\n",
+"disp(P)\n",
+"disp('W')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.15: 15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"// x=r*(1-cos(wt))\n",
+"// v=r*wsin(wt)\n",
+"// V=2*A*w*r\n",
+"// Q=V/2/%pi\n",
+"// Q=A*w*r/%pi\n",
+"\n",
+"// Q_peak=A*w*r\n",
+"\n",
+"// Q_peak/Q=%pi\n",
+"\n",
+"disp('The ratio of peak to average flow =')\n",
+"disp(%pi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"d=0.1; // m\n",
+"v_r=2; // m/s\n",
+"f=0.005;\n",
+"g=9.81; // m/s^2\n",
+"L_s=2; // m\n",
+"L_r=10; // m\n",
+"Q1=1.1*10^(-2); // m^3/s\n",
+"z_t=12; // m\n",
+"z_s=5; // m\n",
+"L1=20; // m\n",
+"\n",
+"Q=%pi*d^2/4*v_r;\n",
+"H=12-70*Q-4300*Q^2;\n",
+"k=2*g*H/v_r^2 - (4*f*(L_s+L_r)/d) - 1;\n",
+"disp('The head loss across the restriction orifice =')\n",
+"disp(k)\n",
+"disp('velocity heads')\n",
+"\n",
+"// For the case of the valve being fully open\n",
+"v_t=4*Q1/%pi/d^2;\n",
+"v_r=((2*g*(z_t-z_s) + (4*f*L1/d + 1)*v_t^2)/(4*f*L_r/d + k + 1))^(1/2);\n",
+"\n",
+"H1=4*f*L_r/d*v_r^2/2/g + 4*f*L_s/d*(v_r^2+v_t^2)/2/g + k*v_r^2/2/g + v_r^2/2/g;\n",
+"\n",
+"Q=%pi*d^2/4*(v_t+v_r);\n",
+"\n",
+"H2=12-70*Q-4300*Q^2;\n",
+"\n",
+"disp('System head =')\n",
+"disp(H1)\n",
+"disp('m')\n",
+"\n",
+"disp('Delivered head =')\n",
+"disp(H2)\n",
+"disp('m')\n",
+"\n",
+"disp('The delivered head therefore closely matches the system head at the flow rate of 1.1*10^(-2) m^3/s, corresponding to the duty point')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"NPSH=5; // m\n",
+"p_v=18*10^3; // N/m^2\n",
+"p_l=0.94*101.3*10^3; // N/m^2 \n",
+"rho=970; // kg/m^3\n",
+"g=9.81; // m/s^2\n",
+"z_s=3; // m\n",
+"H_L=0.5; // m\n",
+"d=3; // m\n",
+"h=2.5; // m\n",
+"Q=5; // m^3/h\n",
+"\n",
+"z1=NPSH+(p_v-p_l)/rho/g + z_s + H_L;\n",
+"V=%pi/4*d^2*(h-z1);\n",
+"t=V/Q;\n",
+"\n",
+"disp('Quantity of liquid delivered =')\n",
+"disp(V)\n",
+"disp('m^3')\n",
+"\n",
+"disp('Time taken =')\n",
+"disp(t)\n",
+"disp('h')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"N_s=0.14; // m^(3/4)s^(-3/2)\n",
+"H=30; // m\n",
+"p_v=7.38*10^3; // N/m^2\n",
+"p_l=50*10^3; // N/m^2\n",
+"rho=992; // kg/m^3\n",
+"g=9.81; // m/s^2\n",
+"H_L=0.2; // m\n",
+"\n",
+"NPSH=2.8*N_s^(4/3)*H;\n",
+"z1=NPSH+(p_v-p_l)/rho/g+H_L;\n",
+"disp('The minimum level of the alarm =')\n",
+"disp(z1)\n",
+"disp('m')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}