summaryrefslogtreecommitdiff
path: root/Fiber_Optics_and_Optoelectronics_by_R_P_Khare/8-Optoelectronic_Detectors.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fiber_Optics_and_Optoelectronics_by_R_P_Khare/8-Optoelectronic_Detectors.ipynb')
-rw-r--r--Fiber_Optics_and_Optoelectronics_by_R_P_Khare/8-Optoelectronic_Detectors.ipynb332
1 files changed, 332 insertions, 0 deletions
diff --git a/Fiber_Optics_and_Optoelectronics_by_R_P_Khare/8-Optoelectronic_Detectors.ipynb b/Fiber_Optics_and_Optoelectronics_by_R_P_Khare/8-Optoelectronic_Detectors.ipynb
new file mode 100644
index 0000000..f0ae309
--- /dev/null
+++ b/Fiber_Optics_and_Optoelectronics_by_R_P_Khare/8-Optoelectronic_Detectors.ipynb
@@ -0,0 +1,332 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Optoelectronic Detectors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: wavelength_and_optical_power_and.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.1: The photon energy and optical power\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"format('v',5)\n",
+"disp('part (a)')\n",
+"h=6.626*10^-34;// in Js\n",
+"c=3*10^8;// in ms^-1\n",
+"E=1.52*10^-19;// in J\n",
+"lamda=((h*c)/E)*10^6;\n",
+"disp(lamda,'The photon energy,(micro-m) = ')\n",
+"disp('part (b)')\n",
+"e=1.6*10^-19;// in J\n",
+"Ip=3*10^6;// in A\n",
+"E=1.52*10^-19;// in J\n",
+"eta=70/100;\n",
+"R=(eta*e)/E;\n",
+"P_in=(Ip/R)*10^-6;\n",
+"disp(P_in,'The optical power,(micro W)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: quantum_efficiency_maximum_possible_band_gap_energy_and_photocurrent.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.2: The quantum efficiency,Maximum possible band gap energy and mean output\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"disp('part (a)')\n",
+"format('v',5)\n",
+"e=1;// electron\n",
+"p=2;// photon\n",
+"eta=(e/p)*100;\n",
+"disp(eta,'The quantum efficiency,eta(%) = ')\n",
+"disp('part (b)')\n",
+"h=6.626*10^-34;//in Js\n",
+"c=3*10^8;// in m s^-1\n",
+"lamda_c=0.85*10^-6;// in m\n",
+"Eg=((h*c)/lamda_c)/1.6*10^19;\n",
+"disp(Eg,'Maximum possible band gap energy,Eg(eV) = ')\n",
+"disp('part (c)')\n",
+"e=1;// electron\n",
+"p=2;// photon\n",
+"eta=(e/p);\n",
+"e=1.6*10^-19;// in J\n",
+"h=6.626*10^-34;//in Js\n",
+"c=3*10^8;// in m s^-1\n",
+"lamda_c=0.85*10^-6;// in m\n",
+"Eg=((h*c)/lamda_c);\n",
+"P_in=10*10^-6;// in W\n",
+"Ip=((eta*e*P_in)/Eg)*10^6;\n",
+"disp(Ip,'The mean output,Ip(micro A) = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: quantum_efficiency_and_responsivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.3: The quantum efficiency and The responsivity of the diode\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"format('v',5)\n",
+"disp('part (a)')\n",
+"e=2*10^10;// in s^-1\n",
+"p=5*10^10;// in s^-1\n",
+"eta=e/p;\n",
+"disp(eta,'The quantum efficiency = ')\n",
+"disp('part (b)')\n",
+"e=2*10^10;// in s^-1\n",
+"p=5*10^10;// in s^-1\n",
+"eta=e/p;\n",
+"e=1.6*10^-19;// in J\n",
+"h=6.626*10^-34;//in Js\n",
+"c=3*10^8;// in m s^-1\n",
+"lamda=0.90*10^-6;// in m\n",
+"R=(eta*e*lamda)/(h*c);\n",
+"disp(R,'The responsivity of the diode,R(AW^-1) = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: multiplication_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.4: The multiplication\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',5)\n",
+"//given data :\n",
+"eta=40/100;//\n",
+"e=1.6*10^-19;// in J\n",
+"h=6.626*10^-34;//in Js\n",
+"c=3*10^8;// in m s^-1\n",
+"lamda=1.3*10^-6;// in m\n",
+"P_in=0.3*10^-6;// in W\n",
+"I=6*10^-6;// in A\n",
+"M=(I*h*c)/(P_in*eta*e*lamda);\n",
+"disp(M,'The multiplication factor,M = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: incident_rate_of_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.5: Photon rate\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"format('v',9)\n",
+"e=1.6*10^-19;// in J\n",
+"M=800;\n",
+"eta=90/100;// quantum efficiency\n",
+"I=2*10^-9;// in A\n",
+"P_rate=I/(e*eta*M);\n",
+"disp(P_rate,'Photon incident rate(s^-1) = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: gain_and_photocurrent.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.6: Gain and The output photocurrent\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"format('v',6)\n",
+"disp('part (a)')\n",
+"tf=6*10^-12;// in s\n",
+"del_f=450*10^6;// in Hz\n",
+"G=1/(2*%pi*tf*del_f);\n",
+"disp(G,'the gain = ')\n",
+"disp('part (b)')\n",
+"format('e',10)\n",
+"tf=6*10^-12;// in s\n",
+"del_f=450*10^6;// in Hz\n",
+"G=1/(2*%pi*tf*del_f);\n",
+"eta=75/100;\n",
+"P_in=5*10^-6;// in W\n",
+"e=1.6*10^-19;// in J\n",
+"lamda=1.3*10^-6;\n",
+"h=6.626*10^-34;//in Js\n",
+"c=3*10^8;// in m s^-1\n",
+"I=(G*eta*P_in*e*lamda)/(h*c);\n",
+"disp(I,'The output photo-current,I(A)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: EX8_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.7: rms value of shot noise ,dark noise and thermal noise current and S/N ratio\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',6)\n",
+"disp('part (a)')\n",
+"n=0.7;//efficiency\n",
+"e=1.6*10^-19;//charge\n",
+"h=1.3;//in micro meter\n",
+"hc=6.626*10^-34;//plack constant\n",
+"c=3*10^8;//m/s\n",
+"pin=500;//nW\n",
+"Ip=((n*e*h*10^-6*pin*10^-9)/(hc*c));//in amperes\n",
+"df=25;//Mhz\n",
+"f1=1;//\n",
+"is2=(2*e*Ip*df*10^6*f1);//\n",
+"is=sqrt(is2);//in amperes\n",
+"Id=5*10^-9;//amperes\n",
+"id2=(2*e*Id*df*10^6);//\n",
+"id=sqrt(id2);//in amperes\n",
+"k=1.38*10^-23;//\n",
+"t=300;//in kelvin\n",
+"rl=1000;//ohms\n",
+"it2=((4*k*t*df*10^6)/rl);//\n",
+"it=sqrt(it2);//in amperes\n",
+"disp(is*10^9,'rms value of shot noise current is,(nA)=')\n",
+"disp(id*10^9,'rms value of dark current is,(nA)=')\n",
+"disp(it*10^9,'rms value of thermal noise current is,(nA)=')\n",
+"format('v',4)\n",
+"disp('part (b)')\n",
+"n=0.7;//efficiency\n",
+"e=1.6*10^-19;//charge\n",
+"h=1.3;//in micro meter\n",
+"hc=6.626*10^-34;//plack constant\n",
+"c=3*10^8;//m/s\n",
+"pin=500;//nW\n",
+"Ip=((n*e*h*10^-6*pin*10^-9)/(hc*c));//in amperes\n",
+"df=25;//Mhz\n",
+"f1=1;//\n",
+"is2=(2*e*Ip*df*10^6*f1);//\n",
+"is=sqrt(is2);//in amperes\n",
+"Id=5*10^-9;//amperes\n",
+"id2=(2*e*Id*df*10^6);//\n",
+"id=sqrt(id2);//in amperes\n",
+"k=1.38*10^-23;//\n",
+"t=300;//in kelvin\n",
+"rl=1000;//ohms\n",
+"it2=((4*k*t*df*10^6)/rl);//\n",
+"it=sqrt(it2);//in amperes\n",
+"itt2=is2+id2+it2;//in A^2\n",
+"ip2=Ip^2;//\n",
+"sn=ip2/itt2;//\n",
+"disp(sn,'S/N ratio is')\n",
+"//S/N ratio is calculated wrong in the textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}