summaryrefslogtreecommitdiff
path: root/Engineering_Thermodynamics_by_O_Singh/2-Zeroth_Law_Of_Thermodynamics.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Thermodynamics_by_O_Singh/2-Zeroth_Law_Of_Thermodynamics.ipynb')
-rw-r--r--Engineering_Thermodynamics_by_O_Singh/2-Zeroth_Law_Of_Thermodynamics.ipynb230
1 files changed, 230 insertions, 0 deletions
diff --git a/Engineering_Thermodynamics_by_O_Singh/2-Zeroth_Law_Of_Thermodynamics.ipynb b/Engineering_Thermodynamics_by_O_Singh/2-Zeroth_Law_Of_Thermodynamics.ipynb
new file mode 100644
index 0000000..5bd4538
--- /dev/null
+++ b/Engineering_Thermodynamics_by_O_Singh/2-Zeroth_Law_Of_Thermodynamics.ipynb
@@ -0,0 +1,230 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Zeroth Law Of Thermodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Engineering_Thermodynamics_by_Onkar_Singh_Chapter_2_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Display mode\n",
+"mode(0);\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"clear;\n",
+"clc;\n",
+"disp('Engineering Thermodynamics by Onkar Singh,Chapter 2,Example 1')\n",
+"Tf=98.6;//temperature of body in farenheit\n",
+"disp('degree celcius and farenheit are related as follows')\n",
+"disp('Tc=(Tf-32)/1.8')\n",
+"disp('so temperature of body in degree celcius')\n",
+"Tc=(Tf-32)/1.8"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Engineering_Thermodynamics_by_Onkar_Singh_Chapter_2_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Display mode\n",
+"mode(0);\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"clear;\n",
+"clc;\n",
+"disp('Engineering Thermodynamics by Onkar Singh,Chapter 2,Example 2')\n",
+"t1=0;//ice point temperature in degree celcius\n",
+"p1=3;//thermometric property for ice point\n",
+"t2=100;//steam point temperature in degree celcius\n",
+"p2=8;//thermometric property for steam point\n",
+"p3=6.5;//thermometric property for any temperature\n",
+"disp('using thermometric relation')\n",
+"disp('t=a*log(p)+(b/2)')\n",
+"disp('for ice point,b/a=')\n",
+"b=2*log(p1)\n",
+"disp('so b=2.1972*a')\n",
+"disp('for steam point')\n",
+"a=t2/(log(p2)-(2.1972/2))\n",
+"disp('and b=')\n",
+"b=2.1972*a\n",
+"disp('thus, t=a*log(p3)+(b/2) in degree celcius')\n",
+"t=a*log(p3)+(b/2)\n",
+"disp('so for thermodynamic property of 6.5,t=302.83 degree celcius')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Engineering_Thermodynamics_by_Onkar_Singh_Chapter_2_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Display mode\n",
+"mode(0);\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"clear;\n",
+"clc;\n",
+"disp('Engineering Thermodynamics by Onkar Singh,Chapter 2,Example 3')\n",
+"disp('emf equation')\n",
+"disp('E=(0.003*t)-((5*10^-7)*t^2))+(0.5*10^-3)')\n",
+"disp('using emf equation at ice point,E_0 in volts')\n",
+"t=0;//ice point temperature in degree celcius\n",
+"disp('E_0=(0.003*t)-((5*10^-7)*t^2)+(0.5*10^-3)')\n",
+"E_0=(0.003*t)-((5*10^-7)*t^2)+(0.5*10^-3)\n",
+"disp('using emf equation at steam point,E_100 in volts')\n",
+"t=100;//steam point temperature in degree celcius\n",
+"disp('E_100=(0.003*t)-((5*10^-7)*t^2)+(0.5*10^-3)')\n",
+"E_100=(0.003*t)-((5*10^-7)*t^2)+(0.5*10^-3)\n",
+"disp('now emf at 30 degree celcius using emf equation(E_30)in volts')\n",
+"t=30;//temperature of substance in degree celcius\n",
+"E_30=(0.003*t)-((5*10^-7)*t^2)+(0.5*10^-3)\n",
+"disp('now the temperature(T) shown by this thermometer')\n",
+"disp('T=((E_30-E_0)/(E_100-E_0))*(T_100-T_0) in degree celcius')\n",
+"T_100=100;//steam point temperature in degree celcius\n",
+"T_0=0;//ice point temperature in degree celcius\n",
+"T=((E_30-E_0)/(E_100-E_0))*(T_100-T_0)\n",
+"disp('NOTE=>In this question,values of emf at 100 and 30 degree celcius is calculated wrong in book so it is corrected above so the answers may vary.')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Engineering_Thermodynamics_by_Onkar_Singh_Chapter_2_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Display mode\n",
+"mode(0);\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"clear;\n",
+"clc;\n",
+"disp('Engineering Thermodynamics by Onkar Singh,Chapter 2,Example 4')\n",
+"t1=0;//temperature at ice point\n",
+"t2=100;//temperature at steam point\n",
+"t3=50;//temperature of gas\n",
+"disp('emf equation,e=0.18*t-5.2*10^-4*t^2 in millivolts')\n",
+"disp('as ice point and steam points are two reference points,so')\n",
+"disp('at ice point,emf(e1)in mV')\n",
+"e1=0.18*t1-5.2*10^-4*t1^2\n",
+"disp('at steam point,emf(e2)in mV')\n",
+"e2=0.18*t2-5.2*10^-4*t2^2\n",
+"disp('at gas temperature,emf(e3)in mV')\n",
+"e3=0.18*t3-5.2*10^-4*t3^2\n",
+"disp('since emf variation is linear so,temperature(t)in degree celcius at emf of 7.7 mV')\n",
+"t=((t2-t1)/(e2-e1))*e3\n",
+"disp('temperature of gas using thermocouple=60.16 degree celcius')\n",
+"disp('% variation in temperature reading with respect to gas thermometer reading of 50 degree celcius')\n",
+"variation=((t-t3)/t3)*100"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Engineering_Thermodynamics_by_Onkar_Singh_Chapter_2_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Display mode\n",
+"mode(0);\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"clear;\n",
+"clc;\n",
+"disp('Engineering Thermodynamics by Onkar Singh,Chapter 2,Example 5')\n",
+"disp('let the conversion relation be X=aC+b')\n",
+"disp('where C is temperature in degree celcius,a&b are constants and X is temperature in X degree ')\n",
+"disp('at freezing point,temperature=0 degree celcius,0 degree X')\n",
+"disp('so by equation X=aC+b')\n",
+"X=0;//temperature in degree X\n",
+"C=0;//temperature in degree celcius\n",
+"disp('we get b=0')\n",
+"b=0;\n",
+"disp('at boiling point,temperature=100 degree celcius,1000 degree X')\n",
+"X=1000;//temperature in degree X\n",
+"C=100;//temperature in degree celcius\n",
+"a=(X-b)/C\n",
+"disp('conversion relation')\n",
+"disp('X=10*C')\n",
+"disp('absolute zero temperature in degree celcius=-273.15')\n",
+"disp('absolute zero temperature in degree X=')\n",
+"10*-273.15"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}