summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_V_Yadav
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_V_Yadav')
-rw-r--r--Engineering_Physics_by_V_Yadav/1-Quantum_Mechanics.ipynb1358
-rw-r--r--Engineering_Physics_by_V_Yadav/2-Interference.ipynb2191
-rw-r--r--Engineering_Physics_by_V_Yadav/3-Diffraction.ipynb1494
-rw-r--r--Engineering_Physics_by_V_Yadav/4-Polarization.ipynb850
-rw-r--r--Engineering_Physics_by_V_Yadav/5-Nuclear_Physics.ipynb263
-rw-r--r--Engineering_Physics_by_V_Yadav/6-Semiconductors_and_Nano_Physics.ipynb92
-rw-r--r--Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb372
-rw-r--r--Engineering_Physics_by_V_Yadav/8-Laser.ipynb184
8 files changed, 6804 insertions, 0 deletions
diff --git a/Engineering_Physics_by_V_Yadav/1-Quantum_Mechanics.ipynb b/Engineering_Physics_by_V_Yadav/1-Quantum_Mechanics.ipynb
new file mode 100644
index 0000000..d0faa3a
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/1-Quantum_Mechanics.ipynb
@@ -0,0 +1,1358 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Quantum Mechanics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: de_Broglie_wavelength_associated_with_moving_proton.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.10: Page-1.8 (2009)\n",
+"clc; clear;\n",
+"m = 1.67e-027; // Mass of the proton, kg\n",
+"c = 3e+08; // Speed of light, m/s\n",
+"v = 1/20*c; // Velocity of the proton, m/s\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"lambda = h/(m*v); // de Broglie wavelength of the neutron, m\n",
+"printf('\nThe de Broglie wavelength associated with moving proton = %5.3e m', lambda);\n",
+"\n",
+"// Result \n",
+"// The de Broglie wavelength associated with moving proton = 2.645e-14 m\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: Wavelength_of_matter_wave_associated_with_moving_proton.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.11: Page-1.8 (2009)\n",
+"clc; clear;\n",
+"m = 1.67e-027; // Mass of the proton, kg\n",
+"v = 2e+08; // Velocity of the proton, m/s\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"lambda = h/(m*v); // de Broglie wavelength of the neutron, m\n",
+"printf('\nThe wavelength of matter wave associated with moving proton = %5.3e m', lambda);\n",
+"\n",
+"// Result \n",
+"// The wavelength of matter wave associated with moving proton = 1.984e-15 m \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: de_Broglie_wavelength_of_an_electron_accelerated_through_a_given_potential.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.12: Page-1.17 (2009)\n",
+"clc; clear;\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"q = 1.6e-019; // Charge on an electron, C\n",
+"V = 50; // Accelearting potential, V\n",
+"E = q*V; // Energy gained by the electron, J\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"lambda = h/sqrt(2*m*E); // de Broglie wavelength of the electron, m\n",
+"printf('\nThe de Broglie wavelength of the electron accelearted through a given potential = %5.3e m', lambda);\n",
+"\n",
+"// Result \n",
+"// The de Broglie wavelength of the electron accelearted through a given potential = 1.736e-10 m \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: Interplanar_spacing_of_the_crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.13: Page-1.17 (2009)\n",
+"clc; clear;\n",
+"theta = 45; // Diffraction angle, degrees\n",
+"h = 6.626e-034; // Planck's constant\n",
+"m = 1.67e-027; // Mass of a neutron, kg\n",
+"n = 1; // Order of diffraction\n",
+"k = 1.38e-023; // Boltzmann constant, J/mol/K\n",
+"T = 27+273; // Absolute room temperature, K\n",
+"E = 3/2*k*T; // Energy of the neutron, J\n",
+"lambda = h/sqrt(2*m*E); // de-Broglie wavelength of neutrons, m\n",
+"// From Bragg's law, 2*d*sin(theta) = n*lambda, solving for d\n",
+"d = n*lambda/(2*sind(theta));\n",
+"printf('\nThe interplanar spacing of the crystal = %4.2f angstrom', d/1e-010);\n",
+"\n",
+"// Result \n",
+"// The interplanar spacing of the crystal = 1.03 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: Interplanar_spacing_using_Bragg_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.14: Page-1.18 (2009)\n",
+"clc; clear;\n",
+"theta = 70; // Glancing angle at which reflection occurs, degrees\n",
+"h = 6.626e-034; // Planck's constant\n",
+"m = 9.1e-031; // Mass of a electron, kg\n",
+"e = 1.6e-019; // Electronic charge, C\n",
+"V = 1000; // Accelerating potential, V\n",
+"n = 1; // Order of diffraction\n",
+"E = e*V; // Energy of the electron, J\n",
+"lambda = h/sqrt(2*m*E); // de-Broglie wavelength of electron, m\n",
+"// From Bragg's law, 2*d*sin(theta) = n*lambda, solving for d\n",
+"d = n*lambda/(2*sind(theta)); // Interplanar spacing, m\n",
+"printf('\nThe interplanar spacing of the crystal = %6.4e m', d);\n",
+"\n",
+"// Result \n",
+"// The interplanar spacing of the crystal = 2.0660e-11 m \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: de_Broglie_wavelength_of_electron_accelerated_at_V_volts.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.15: Page-1.18 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant\n",
+"m = 9.1e-031; // Mass of a electron, kg\n",
+"e = 1.6e-019; // Electronic charge, C\n",
+"V = 1; // For simplicity the accelerating potential is assumed to be unity, V\n",
+"E = e*V; // Energy of the electron, J\n",
+"lambda = h/sqrt(2*m*E); // de-Broglie wavelength of electron, m\n",
+"printf('\nde-Broglie wavelength of electron accelerated at V volts = %5.2f/sqrt(V) angstrom', lambda/1e-010);\n",
+"\n",
+"// Result \n",
+"// de-Broglie wavelength of electron accelerated at V volts = 12.23/sqrt(V) angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: de_Broglie_wavelength_of_electron_accelerated_from_rest.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.16: Page-1.18 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant\n",
+"m = 9.1e-031; // Mass of a electron, kg\n",
+"e = 1.6e-019; // Electronic charge, C\n",
+"V = 100; // Accelerating potential for electron, V\n",
+"E = e*V; // Energy of the electron, J\n",
+"lambda = h/sqrt(2*m*E); // de-Broglie wavelength of electron, m\n",
+"printf('\nde-Broglie wavelength of electron accelerated at %d volts = %6.4e m', V, lambda);\n",
+"\n",
+"// Result \n",
+"// de-Broglie wavelength of electron accelerated at 100 volts = 1.2231e-10 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: The_wavelength_associated_with_moving_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.17: Page-1.19 (2009)\n",
+"clc; clear;\n",
+"m = 10e-03; // Mass of the body, kg\n",
+"v = 110; // Velocity of the mass, m/s\n",
+"h = 6.6e-034; // Planck's constant\n",
+"lambda = h/(m*v); // de-Broglie wavelength of electron, m\n",
+"printf('\nThe wavelength associated with mass moving with velocity %d m/s = %1.0e m', v, lambda);\n",
+"\n",
+"// Result \n",
+"// The wavelength associated with mass moving with velocity 110 m/s = 6e-34 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: Wavelength_of_an_electron_from_its_kinetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.18: Page-1.19 (2009)\n",
+"clc; clear;\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"Ek = 1.27e-017; // Kinetic energy of electron, J\n",
+"h = 6.6e-034; // Planck's constant\n",
+"lambda = h/sqrt(2*m*Ek); // de-Broglie wavelength of electron, m\n",
+"printf('\nThe wavelength associated with moving electron = %4.2f angstrom', lambda/1e-010);\n",
+"\n",
+"// Result \n",
+"// The wavelength associated with moving electron = 1.37 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.19: Kinetic_energy_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.19: Page-1.19 (2009)\n",
+"clc; clear;\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"h = 6.6e-034; // Planck's constant\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"lambda = 9.1e-012; // de-Broglie wavelength of electron, m\n",
+"// We have lambda = h/(m*v), solving for v\n",
+"v = h/(m*lambda); // Velocity of the electron, m/s\n",
+"K = 1/2*m*v^2; // Kinetic energy of electron, J\n",
+"printf('\nThe kinetic energy of electron having wavelength %3.1e m = %4.2e eV', lambda, K/e);\n",
+"\n",
+"// Result \n",
+"// The kinetic energy of electron having wavelength 9.1e-12 m = 1.81e+04 eV \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Energy_of_the_particle_from_de_Broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.1:Page-1.5 (2009)\n",
+"clc; clear;\n",
+"lambda = 2.1e-010; // de Broglie wavelength of the particle, m\n",
+"m = 1.67e-027; // Mass of the particle, kg\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"// From de Broglie relation, lambda = h/sqrt(2*m*E), solving for E\n",
+"E = h^2/(2*m*lambda^2*e); // Energy of the particle, eV\n",
+"printf('\nThe energy of the particle from de Broglie wavelength = %5.3e eV', E);\n",
+"\n",
+"// Result \n",
+"// The energy of the particle from de Broglie wavelength = 1.863e-002 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.20: Speed_of_proton_for_an_equivalent_wavelength_of_that_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.20: : Page-1.19 (2009)\n",
+"clc; clear;\n",
+"m_e = 9.1e-031; // Mass of the electron, kg\n",
+"m_p = 1.67e-027; // Mass of the proton, kg\n",
+"v_e = 1; // For simplicity assume velocity of electron to be unity, m/s\n",
+"// From de-Broglie relation, \n",
+"// lambda_p = lambda_e = h(m*v_p), solving for v_p\n",
+"v_p = m_e*v_e/m_p; // Velocity of the proton, m/s\n",
+"// As lambda_e = h/sqrt(2*m_e*K_e) and lambda_p = h/sqrt(2*m_p*K_p), solving for K_e/K_p\n",
+"K_ratio = m_p/m_e; // Ratio of kinetic energies of electron and proton\n",
+"\n",
+"printf('\nThe speed of proton for an equivalent wavelength of that of electron = %3.1e ve', v_p);\n",
+"printf('\nRatio of kinetic energies of electron and proton = %3.1e, therefore Ke > Kp', K_ratio);\n",
+"\n",
+"// Result \n",
+"// The speed of proton for an equivalent wavelength of that of electron = 5.4e-04 ve\n",
+"// Ratio of kinetic energies of electron and proton = 1.8e+03, therefore Ke > Kp "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21: de_Broglie_wavelength_of_the_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.21: Page-1.20 (2009)\n",
+"clc; clear;\n",
+"V = 50; // Potential difference, V\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"e = 1.6e-019; // Electronic charge, C\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"lambda = h/sqrt(2*m*e*V); // From de-Broglie relation,\n",
+"printf('\nde-Broglie wavelength of the electron = %4.2f angstrom', lambda/1e-010);\n",
+"\n",
+"// Result \n",
+"// de-Broglie wavelength of the electron = 1.73 angstrom"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23: Minimum_accuracy_to_locate_the_position_of_an_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.23:: Page-1.31 (2009)\n",
+"clc; clear;\n",
+"v = 740; // Speed of the electron, m/s\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"p = m*v; // Momentum of the electron, kg-m/s\n",
+"frac_v = 0.05/100; // Correctness in the speed \n",
+"delta_p = p*frac_v; // Uncertainty in momentum, kg-m/s\n",
+"delta_x = h/(4*%pi)*1/delta_p; // Uncertainty in position, m\n",
+"\n",
+"printf('\nThe minimum accuracy to locate the position of an electron = %4.2e m',delta_x);\n",
+"\n",
+"// Result \n",
+"// The minimum accuracy to locate the position of an electron = 1.56e-04 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.24: Uncertainty_in_energy_of_an_emitted_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.24: : Page-1.31 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"h_cross = h/(2*%pi); // Reduced Planck's constant, Js\n",
+"delta_t = 1e-010; // Uncertainty in time, s\n",
+"// From Energy-time uncertainty, \n",
+"// delta_E*delta_t = h_cross/2, solving for delta_E\n",
+"delta_E = h_cross/(2*delta_t); // Uncertainty in energy of an emitted photon, J \n",
+"\n",
+"printf('\nThe uncertainty in energy of an emitted photon = %5.3e eV', delta_E/1.6e-019);\n",
+"\n",
+"// Result \n",
+"// The uncertainty in energy of an emitted photon = 3.283e-06 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.25: Minimum_uncertainty_in_velocity_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.25: : Page-1.31 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"delta_x_max = 1e-007; // Uncertainty in length, m\n",
+"m = 9.1e-031; // Mass of an electron, kg\n",
+"// From Position-momentum uncertainty, \n",
+"// delta_p_min = m*delta_v_min = h/delta_x_max, solving for delta_v_min\n",
+"delta_v_min = h/(delta_x_max*m); // Minimum uncertainty in velocity of electron, m/s\n",
+"\n",
+"printf('\nThe minimum uncertainty in velocity of electron = %4.2e m/s', delta_v_min);\n",
+"\n",
+"// Result \n",
+"// The minimum uncertainty in velocity of electron = 7.25e+03 m/s "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.26: Minimum_uncertainty_in_momentum_and_minimum_kinetic_energy_of_proton.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.26: Page-1.32 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"delta_x_max = 8.5e-014; // Uncertainty in length, m\n",
+"m = 1.67e-027; // Mass of proton, kg\n",
+"// From Position-momentum uncertainty, \n",
+"// delta_p_min*delta_x_max = h, solving for delta_p_min\n",
+"delta_p_min = h/delta_x_max; // Minimum uncertainty in momentum of electron, kg-m/s\n",
+"p_min = delta_p_min; // Minimum momentum of the proton, kg.m/s\n",
+"delta_E = p_min^2/(2*m); \n",
+" \n",
+"printf('\nThe minimum uncertainty in momemtum of proton = %4.2e kg-m/s', p_min);\n",
+"printf('\nThe kinetic energy of proton = %6.3e eV', delta_E/1.6e-019);\n",
+"\n",
+"// Result \n",
+"// The minimum uncertainty in momemtum of proton = 7.76e-21 kg-m/s\n",
+"// The kinetic energy of proton = 1.128e+05 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.27: Uncertainty_in_momentum_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.27:: Page-1.32 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"E = 0.15*1e+03*e; // Energy of the electron, J\n",
+"m = 9.1e-031; // Mass of electron, kg\n",
+"delta_x = 0.5e-010; // Position uncertainty of electron, m\n",
+"p = (2*m*E)^(1/2); // Momentum of the electron, kg-m/s\n",
+"// delta_x*delta_p = h/(4*%pi), solving for delta_p\n",
+"delta_p = h/(4*%pi*delta_x); // Uncertainty in momentum of electron, kg-m/s\n",
+"frac_p = delta_p/p*100; // Percentage uncertainty in momentum of electron, kg-m/s\n",
+"\n",
+"printf('\nThe percentage uncertainty in momentum of electron = %2d percent', frac_p);\n",
+"\n",
+"// Result \n",
+"// The percentage uncertainty in momentum of electron = 15 percent "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.28: Uncertainty_in_position_of_the_particle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.28:: Page-1.33 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"delta_v = 7.54e-015; // Uncertainty in velocity of the particle, m/s\n",
+"m = 0.25e-06; // Mass of particle, kg\n",
+"// delta_x*delta_p = h/(4*%pi), solving for delta_x\n",
+"delta_x = h/(4*%pi*m*delta_v); // Position uncertainty of particle, m\n",
+"\n",
+"printf('\nThe position uncertainty of particle = %4.2e m', delta_x);\n",
+"\n",
+"// Result \n",
+"// The position uncertainty of particle = 2.79e-14 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.29: Uncertainty_in_position_of_the_moving_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.29:: Page-1.33 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"v = 450; // Velocity of the electron, m/s\n",
+"delta_v = v*0.05/100; // Uncertainty in velocity of the particle, m/s\n",
+"m = 9.1e-031; // Mass of electron, kg\n",
+"// delta_x*delta_p = h/(4*%pi), solving for delta_x\n",
+"delta_x = h/(4*%pi*m*delta_v); // Position uncertainty of particle, m\n",
+"\n",
+"printf('\nThe position uncertainty of moving electron = %4.2e m', delta_x);\n",
+"\n",
+"// Result \n",
+"// The position uncertainty of moving electron = 2.57e-04 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: de_Broglie_wavelength_of_the_particle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.2: Page-1.5 (2009)\n",
+"clc; clear;\n",
+"m = 1.67e-027; // Mass of the particle, kg\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"E = 1e+011*e; // Energy of the particle, J\n",
+"lambda = h/sqrt(2*m*E); // de Broglie wavelength of the particle, m\n",
+"printf('\nThe de Broglie wavelength of the particle = %4.2e m', lambda);\n",
+"\n",
+"// Result \n",
+"// The de Broglie wavelength of the particle = 9.06e-017 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.30: Smallest_possible_uncertainty_in_position_of_the_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.30:: Page-1.33 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"c = 3e+08; // Speed of light, m/s\n",
+"v = 3e+07; // Velocity of the electron, m/s\n",
+"m0 = 9.1e-031; // Rest mass of electron, kg\n",
+"m = m0/sqrt(1-v^2/c^2); // Mass of moving electron, kg\n",
+"delta_p_max = m*v; // Maximum uncertainty in momentum of the particle, m/s\n",
+"// delta_x_min*delta_p_max = h/(4*%pi), solving for delta_x_min\n",
+"delta_x_min = h/(4*%pi*delta_p_max); // Minimum position uncertainty of particle, m\n",
+"\n",
+"printf('\nThe smallest possible uncertainty in position of the electron = %5.3f angstrom', delta_x_min/1e-010);\n",
+"\n",
+"// Result \n",
+"// The smallest possible uncertainty in position of the electron = 0.019 angstrom"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.31: EX1_31.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.31: : Page-1.44 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Electronic mass, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"l = 2e-002; // Length of the side of the cube, m\n",
+"E_F = 9*e; // Fermi energy, J\n",
+"// As E_F = h^2/(8*m*l^2)*(nx^2 + ny^2 + nz^2) and nx = ny = nz for a cube, solving for nx\n",
+"nx = sqrt(E_F*(8*m*l^2)/(3*h^2)); // Value of integer for a cube\n",
+"E = h^2/(8*m*l^2)*3*nx^2; // Fermi energy, J\n",
+"E1 = h^2/(8*m*l^2)*((nx-1)^2 + nx^2 + nx^2); // Energy of the level just below the fermi level, J\n",
+"delta_E = E - E1; // Difference in the energy between the neighbouring levels of Na at the highest state, J\n",
+"printf('\nThe energy difference between the neighbouring levels of Na at the highest state = %4.2e eV', delta_E/e);\n",
+"// Result \n",
+"// The energy difference between the neighbouring levels of Na at the highest state = 1.06e-07 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.32: Energy_of_the_neutron_confined_in_a_nucleus.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.32:: Page-1.45 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m = 1.67e-027; // Electronic mass, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"nx = 1, ny = 1, nz = 1; // Principle quantum numbers in 3D corresponding to the longest energy state\n",
+"lx = 1e-014, ly = 1e-014, lz = 1e-014; // Dimensions of the box to which the neutron is confined, m\n",
+"E = h^2/(8*m)*(nx^2/lx^2+ny^2/ly^2+nz^2/lz^2); // Energy of the neutron confined in the nucleus, J\n",
+"printf('\nThe energy of the neutron confined in a nucleus = %4.2e eV', E/e);\n",
+"// Result \n",
+"// The energy of the neutron confined in a nucleus = 6.11e+06 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.33: Energy_of_an_electron_moving_in_one_dimensional_infinitely_high_potential_box.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.33:: Page-1.46 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Electronic mass, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"n = 1; // For simplicity assume principle quantum number to be unity\n",
+"l = 2.1e-010; // Length of one dimensional potential box, m\n",
+"E = h^2*n^2/(8*m*l^2); // Energy of the electron, J\n",
+"printf('\nThe energy of the electron moving in one dimensional infinitely high potential box = %4.2f n^2 eV', E/e);\n",
+"// Result \n",
+"// The energy of the electron moving in one dimensional infinitely high potential box = 8.48 n^2 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.34: Lowest_energy_of_an_electron_in_a_one_dimensional_force_free_region.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.34:: Page-1.46 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Electronic mass, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"n = 1; // The lowest energy state of electron\n",
+"l = 3.5e-010; // Length of one dimensional potential box, m\n",
+"E = h^2*n^2/(8*m*l^2); // Energy of the electron in the lowest state, J\n",
+"printf('\nThe lowest energy of the electron in a one dimensional force free region = %1d eV', E/e);\n",
+"// Result \n",
+"// The lowest energy of an electron in a one dimensional force free region = 3 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.35: First_three_energy_levels_of_an_electron_in_one_dimensional_box.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.35:: Page-1.46 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Electronic mass, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"l = 9.5e-010; // Length of one dimensional potential box, m\n",
+"// First energy level\n",
+"n = 1; // The first energy state of electron\n",
+"E1 = h^2*n^2/(8*m*l^2); // Energy of the electron in first state, J\n",
+"// Second energy level\n",
+"n = 2; // The second energy state of electron\n",
+"E2 = h^2*n^2/(8*m*l^2); // Energy of the electron in second state, J\n",
+"// Third energy level\n",
+"n = 3; // The third energy state of electron\n",
+"E3 = h^2*n^2/(8*m*l^2); // Energy of the electron in third state, J\n",
+"printf('\nThe energy of the electron in first state = %4.1e J', E1);\n",
+"printf('\nThe energy of the electron in second state = %4.1e J', E2);\n",
+"printf('\nThe energy of the electron in third state = %4.1e J', E3);\n",
+"// Result \n",
+"// The energy of the electron in first state = 6.6e-20 J\n",
+"// The energy of the electron in second state = 2.7e-19 J\n",
+"// The energy of the electron in third state = 6.0e-19 J "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.36: Lowest_two_permitted_energy_values_of_the_electron_in_a_1D_box.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.36:: Page-1.47 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Electronic mass, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"l = 2.5e-010; // Length of one dimensional potential box, m\n",
+"// First energy level\n",
+"n = 1; // The lowest energy state of electron\n",
+"E1 = h^2*n^2/(8*m*l^2); // Energy of the electron in first state, J\n",
+"// Second energy level\n",
+"n = 2; // The second energy state of electron\n",
+"E2 = h^2*n^2/(8*m*l^2); // Energy of the electron in second state, J\n",
+"printf('\nThe energy of the electron in lowest state = %5.2f eV', E1/e);\n",
+"printf('\nThe energy of the electron in second state = %5.2f eV', E2/e);\n",
+"// Result \n",
+"// The energy of the electron in lowest state = 5.98 eV\n",
+"// The energy of the electron in second state = 23.93 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.37: Lowest_energy_of_the_neutron_confined_to_the_nucleus.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.37:: Page-1.47 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m = 1.67e-027; // Electronic mass, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"l = 2.5e-010; // Length of one dimensional potential box, m\n",
+"delta_x = 1e-014; // Uncertainty in position of neutron, m\n",
+"// From uncertainty principle, \n",
+"// delta_x*delta_p = h/(4*%pi), solving for delta_p\n",
+"delta_p = h/(4*%pi*delta_x); // Uncertainty in momentum of neutron, kg-m/s\n",
+"p = delta_p; // Momemtum of neutron in the box, kg-m/s\n",
+"KE = p^2/(2*m); // Kinetic energy of neutron in the box, J\n",
+"printf('\nThe lowest energy of the neutron confined to the nucleus = %4.2f MeV', KE/(e*1e+06));\n",
+"// Result \n",
+"// The lowest energy of the neutron confined to the nucleus = 0.05 MeV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.38: X_ray_scattering.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.38: : Page-1.56 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m0 = 9.1e-031; // Electronic mass, kg\n",
+"c = 3e+08; // Speed of light, m/s\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"phi = 45; // Scattering angle of X-rays, degrees\n",
+"E = 75; // Incident energy of X-rays, keV\n",
+"// As from Compton shift formula\n",
+"// 1/E_prime - 1/E = 1/(m0*c^2)*(1-cosd(phi))\n",
+"// Solving for E_prime\n",
+"E_prime = 1/((1/(m0*c^2/(e*1e+03)))*(1-cosd(phi))+1/E); // Energy of scattered photon, keV\n",
+"E_recoil = E - E_prime; // Energy of recoil electron, keV\n",
+"printf('\nThe energy of scattered X-ray = %4.1f keV', E_prime);\n",
+"printf('\nThe energy of recoil electron = %3.1f keV', E_recoil);\n",
+"// Result \n",
+"// The energy of scattered X-ray = 71.9 keV\n",
+"// The energy of recoil electron = 3.1 keV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.39: Wavelength_of_scattered_Xray.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.39: : Page-1.57 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m0 = 9.1e-031; // Electronic mass, kg\n",
+"c = 3e+08; // Speed of light, m/s\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"phi = 60; // Scattering angle of X-rays, degrees\n",
+"E = 75; // Incident energy of X-rays, keV\n",
+"// As from Compton shift formula\n",
+"delta_L = h/(m0*c)*(1-cosd(phi)); // Change in photon wavelength, m\n",
+"lambda = 0.198e-010; // Wavelength of incident photon, m\n",
+"lambda_prime = (lambda+delta_L)/1e-010; // Wavelength of scattered X-ray, angstrom \n",
+"printf('\nThe wavelength of scattered X-ray = %6.4f angstrom', lambda_prime);\n",
+"// Result \n",
+"// The wavelength of scattered X-ray = 0.2101 angstrom"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: de_Broglie_wavelength_of_an_accelerated_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.3: Page-1.5 (2009)\n",
+"clc; clear;\n",
+"V = 20e+03; // Accelerating voltage of electron, V\n",
+"lambda = 12.25/sqrt(V); // de Broglie wavelength of the accelerated electron, m\n",
+"printf('\nThe de Broglie wavelength of the electron = %6.4f angstrom', lambda);\n",
+"\n",
+"// Result \n",
+"// The de Broglie wavelength of the electron = 0.0866 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.40: Wavelength_of_scattered_radiation_with_changed_angle_of_view.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.40:: Page-1.57 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m0 = 9.1e-031; // Electronic mass, kg\n",
+"c = 3e+08; // Speed of light, m/s\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"phi = 180; // Scattering angle of X-rays, degrees\n",
+"lambda = 1.78; // Wavelength of incident photon, m\n",
+"lambda_prime = 1.798; // Wavelength of scattered X-ray, angstrom \n",
+"// As from Compton shift formula\n",
+"// lambda_prime - lambda = h/(m0*c)*(1-cosd(phi)), Change in photon wavelength, m\n",
+"// Or we may write, lambda_prime - lambda = k*(1-cosd(phi))\n",
+"// solving for k\n",
+"k = (lambda_prime - lambda)/(1-cosd(phi)); // k = h/(m0*c) value, angstrom\n",
+"// For phi = 60\n",
+"phi = 60; // New angle of scattering, degrees\n",
+"lambda_prime = lambda + k*(1-cosd(phi)); // Wavelength of scattered radiation at 60 degree angle, angstrom\n",
+"printf('\nThe wavelength of scattered X-ray at %d degrees view = %6.4f angstrom', phi, lambda_prime);\n",
+"// Recoil energy of electron\n",
+"E = h*c*(1/lambda - 1/lambda_prime)*1e+010; // Recoil energy of electron, joule\n",
+"printf('\nThe recoil energy of electron scattered through %d degrees = %4.1f eV', phi, E/e); \n",
+"// Result \n",
+"// The wavelength of scattered X-ray at 60 degrees view = 1.7845 angstrom\n",
+"// The recoil energy of electron scattered through 60 degrees = 17.5 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.41: Compton_scattering_through_aluminium_foil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.41:: Page-1.58 (2009)\n",
+"clc; clear;\n",
+"h = 6.6e-034; // Planck's constant, Js\n",
+"m0 = 9.1e-031; // Electronic mass, kg\n",
+"c = 3e+08; // Speed of light, m/s\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"phi = 90; // Scattering angle of X-rays, degrees\n",
+"E = 510*1e+03*e; // Energy of incident photon, J\n",
+"// As E = h*c/lambda, solving for lambda\n",
+"lambda = h*c/E; // Wavelength of incident photon, m\n",
+"// As from Compton shift formula\n",
+"// lambda_prime - lambda = h/(m0*c)*(1-cosd(phi)), solving for lambda_prime\n",
+"lambda_prime = lambda + h/(m0*c)*(1-cosd(phi)); // Wavelength of scattered X-ray, m \n",
+"printf('\nThe wavelength of scattered X-ray as viewed at %d degrees = %4.2e m', phi, lambda_prime);\n",
+"// Recoil energy of electron\n",
+"E = h*c*(1/lambda - 1/lambda_prime); // Recoil energy of electron, joule\n",
+"printf('\nThe recoil energy of electron scattered through %d degrees = %4.2e eV', phi, E/e);\n",
+"// Direction of recoil electron\n",
+"theta = atand(lambda*sind(phi)/(lambda_prime-lambda*cosd(phi))); // Direction of recoil electron, degrees\n",
+"printf('\nThe direction of emission of recoil electron = %5.2f degrees', theta);\n",
+" \n",
+"// Result \n",
+"// The wavelength of scattered X-ray as viewed at 90 degrees = 4.84e-12 m\n",
+"// The recoil energy of electron scattered through 90 degrees = 2.55e+05 eV\n",
+"// The direction of emission of recoil electron = 26.61 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.42: Energetic_electrons_in_the_Xray_tube.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.42: : Page-1.59 (2009)\n",
+"clc; clear;\n",
+"m = 9.1e-031; // Electronic mass, kg\n",
+"c = 3e+08; // Speed of light, m/s\n",
+"e = 1.6e-019; // Charge on the electron, C\n",
+"V = 12.4e+03; // Potential diffeence applied across the X-ray tube, V\n",
+"i = 2e-03; // Current through the X-ray tube, A\n",
+"t = 1; // Time for which the electrons strike the target material, s\n",
+"N = i*t/e; // Number of electrons striking the target per sec, per sec\n",
+"v_max = sqrt(2*e*V/m); // Maximum speed of the electrons, m/s\n",
+"printf('\nThe number of electrons striking the target per sec = %4.2e electrons/sec', N);\n",
+"printf('\nThe maximum speed of the electrons when they strike = %3.1e m/s', v_max);\n",
+" \n",
+"// Result \n",
+"// The number of electrons striking the target per sec = 1.25e+16 electrons/sec\n",
+"// The maximum speed of the electrons when they strike = 6.6e+07 m/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Energy_of_the_electron_from_de_Broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.4: Page-1.6 (2009)\n",
+"clc; clear;\n",
+"lambda = 5.2e-03; // de Broglie wavelength of the electron, m\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"// From de Broglie relation, lambda = h/sqrt(2*m*E), solving for E\n",
+"E = h^2/(2*m*lambda^2*e); // Energy of the electron, eV\n",
+"printf('\nThe energy of the electron from de Broglie wavelength = %5.3e eV', E);\n",
+"\n",
+"// Result \n",
+"// The energy of the electron from de Broglie wavelength = 5.576e-014 eV \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Velocity_and_de_Broglie_wavelength_of_a_neutron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.5: Page-1.6 (2009)\n",
+"clc; clear;\n",
+"m = 1.67e-027; // Mass of the neutron, kg\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"E = 1e+04*e; // Energy of the neutron, J\n",
+"// As E = 1/2*m*v^2, solving for v\n",
+"v = sqrt(2*E/m); // Velocity of the neutron, m/s\n",
+"lambda = h/(m*v); // de Broglie wavelength of the neutron, m\n",
+"printf('\nThe velocity of the neutron = %4.2e m/s', v);\n",
+"printf('\nThe de Broglie wavelength of the neutron = %4.2e m', lambda);\n",
+"\n",
+"// Result \n",
+"// The velocity of the neutron = 1.38e+006 m/s\n",
+"// The de Broglie wavelength of the neutron = 2.87e-013 m \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Wavelength_of_thermal_neutron_at_room_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.6: Page-1.6 (2009)\n",
+"clc; clear;\n",
+"m = 1.67e-027; // Mass of the neutron, kg\n",
+"k = 1.38e-023; // Boltzmann constant, J/mol/K\n",
+"T = 27+273; // Room temperature, K\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"v = sqrt(3*k*T/m); // Velocity of the neutron, m/s\n",
+"lambda = h/(m*v); // de Broglie wavelength of the neutron, m\n",
+"printf('\nThe de Broglie wavelength of the thermal neutrons = %4.2f angstrom', lambda/1e-010);\n",
+"\n",
+"// Result \n",
+"// The de Broglie wavelength of the thermal neutrons = 1.45 angstrom \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Angle_of_deviation_for_first_order_diffraction_maxima.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.7: Page-1.6 (2009)\n",
+"clc; clear;\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"E = 20e+03*e; // Energy of the electron, J\n",
+"// As 1/2*m*v^2 = E, solving for v\n",
+"v = sqrt(2*E/m); // Velocity of the electron, m/s\n",
+"lambda = h/(m*v); // de Broglie wavelength of the electron, m\n",
+"n = 1; // First order diffraction\n",
+"d = 9.8e-011; // Atomic spacing for thin gold foil, m\n",
+"// Using Bragg's equation, 2*d*sin(theta) = n*lambda and solving for theta\n",
+"theta = asind(n*lambda/(2*d)); // Angle of deviation for first order diffraction maxima, degree\n",
+"printf('\nThe angle of deviation for first order diffraction maxima = %4.2f degrees', theta);\n",
+"\n",
+"// Result \n",
+"// The angle of deviation for first order diffraction maxima = 2.54 degrees \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: de_Broglie_wavelength_of_a_moving_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.8: Page-1.7 (2009)\n",
+"clc; clear;\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"E = 5*e; // Energy of the electron, J\n",
+"// As 1/2*m*v^2 = E, solving for v\n",
+"v = sqrt(2*E/m); // Velocity of the electron, m/s\n",
+"lambda = h/(m*v); // de Broglie wavelength of the electron, m\n",
+"printf('\nThe de Broglie wavelength of the electron = %3.1f angstrom', lambda/1e-010);\n",
+"\n",
+"// Result \n",
+"// The de Broglie wavelength of the electron = 5.5 angstrom\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: de_Broglie_wavelength_of_a_neutron_of_given_kinetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.9: Page-1.7 (2009)\n",
+"clc; clear;\n",
+"m = 1.67e-027; // Mass of the neutron, kg\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"E = 1*e; // Energy of the electron, J\n",
+"lambda = h/sqrt(2*m*E); // de Broglie wavelength of the neutron, m\n",
+"printf('\nThe de Broglie wavelength of the neutron = %4.2f angstrom', lambda/1e-010);\n",
+"\n",
+"// Result \n",
+"// The de Broglie wavelength of the neutron = 0.29 angstrom \n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_V_Yadav/2-Interference.ipynb b/Engineering_Physics_by_V_Yadav/2-Interference.ipynb
new file mode 100644
index 0000000..4c57e85
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/2-Interference.ipynb
@@ -0,0 +1,2191 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Interference"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Wavelength_of_light_in_a_biprism_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.10:: Page-2.12 (2009)\n",
+"clc; clear;\n",
+"D = 100; // Distance between slits and the screen, cm\n",
+"d = 0.08; // Separation between the slits, cm\n",
+"b = 2.121/25; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"lambda = b*d/D; // Wavelength of light in a biprism experiment, cm\n",
+"printf('\nThe wavelength of light in a biprism experiment = %5.0f angstrom', lambda/1e-008);\n",
+"// Result\n",
+"// The wavelength of light in a biprism experiment = 6787 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Fringe_width_at_a_certain_distance_from_biprism.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.11:: Page-2.13 (2009)\n",
+"clc; clear;\n",
+"alpha = %pi/180; // Acute angle of biprism, radian\n",
+"mu = 1.5; // Refractive index of biprism\n",
+"lambda = 5900e-008; // Wavelength of light used, cm\n",
+"y1 = 10; // Distance of biprism from the source, cm\n",
+"y2 = 100; // Distance of biprism from the screen, cm\n",
+"D = y1 + y2; // Distance between slits and the screen, cm\n",
+"d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm\n",
+"b = lambda*D/d; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"printf('\nThe fringe width at a distance of %d cm from biprism = %4.2e cm', y2, b);\n",
+"// Result\n",
+"// The fringe width at a distance of 100 cm from biprism = 3.72e-02 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: Distance_between_coherent_sources_in_biprism_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.12:: Page-2.13 (2009)\n",
+"clc; clear;\n",
+"lambda = 5893e-008; // Wavelength of light used, cm\n",
+"y1 = 10; // Distance of biprism from the source, cm\n",
+"y2 = 100; // Distance of biprism from the screen, cm\n",
+"D = y1 + y2; // Distance between slits and the screen, cm\n",
+"b = 3.5e-02; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"d = lambda*D/b; // Distance between coherent sources, cm\n",
+"printf('\nThe distance between coherent sources = %5.3f cm', d);\n",
+"// Result\n",
+"// The distance between coherent sources = 0.185 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: Effect_of_slit_separation_on_fringe_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.13:: Page-2.13 (2009)\n",
+"clc; clear;\n",
+"b = 0.125; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"d = 1; // For simplicity assume distance between sources to be unity, cm\n",
+"d_prime = 3/4*d; // New distance between sources, cm \n",
+"// As b is proportional to 1/d, so\n",
+"b_prime = b*d/d_prime; // New fringe width of the interfernce pattern due to biprism, cm\n",
+"printf('\nThe new value of fringe width due to reduced slit separation = %5.3f cm', b_prime);\n",
+"// Result\n",
+"// The new value of fringe width due to reduced slit separation = 0.167 cm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: Effect_of_slit_biprism_separation_on_fringe_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.14:: Page-2.13 (2009)\n",
+"clc; clear;\n",
+"b = 0.187; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"y1 = 1; // For simplicity assume distance between slit and biprism to be unity, cm\n",
+"y1_prime = 1.25*y1; // New distance between slit and biprism, cm\n",
+"// As d is directly proportional to y1 and b is directly proportional to d, so\n",
+"// b is inversely proportional to y1\n",
+"b_prime = b*y1/y1_prime; // New fringe width of the interfernce pattern due to biprism, cm\n",
+"printf('\nThe new value of fringe width due to increased slit-biprism separation = %5.3f cm', b_prime);\n",
+"// Result\n",
+"// The new value of fringe width due to increased slit-biprism separation = 0.150 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: Distance_between_interference_bands.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.15:: Page-2.14 (2009)\n",
+"clc; clear;\n",
+"d1 = 5e-01; // First distance between images of the slit, cm\n",
+"d2 = 2.25e-01; // Second distance between images of the slit, cm\n",
+"lambda = 5896e-008; // Wavelength of the light used, cm\n",
+"D = 120; // Distance between screen and the slits, cm\n",
+"d = sqrt(d1*d2); // Geometric mean of distance between the two slits, cm\n",
+"b = lambda*D/d; // Distance between interference bands, cm\n",
+"printf('\nThe distance between interference bands = %5.3e cm', b);\n",
+"// Result\n",
+"// The distance between interference bands = 2.109e-02 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: Angle_of_vertex_of_Fresnel_biprism.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.16:: Page-2.14 (2009)\n",
+"clc; clear;\n",
+"mu = 1.5; // Refractive index of biprism\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"y1 = 25; // Distance of biprism from the source, cm\n",
+"y2 = 150; // Distance of biprism from the screen, cm\n",
+"D = y1 + y2; // Distance between slits and the screen, cm\n",
+"b = 0.05; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"// As d = 2*(mu-1)*alpha*y1, solving for alpha\n",
+"alpha = lambda*D/(b*2*(mu-1)*y1) // Angle of vertex of the biprism, radian\n",
+"printf('\nThe angle of vertex of the biprism = %6.4f rad', alpha);\n",
+"// Result\n",
+"// The angle of vertex of the biprism = 0.0077 rad "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: Wavelength_of_light_used_in_biprism_experiment_to_illuminate_slits.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.17:: Page-2.15 (2009)\n",
+"clc; clear;\n",
+"theta = 178; // Vertex angle of biprism, degrees\n",
+"alpha = (180-theta)/2*%pi/180; // Acute angle of biprism, radian\n",
+"mu = 1.5; // Refractive index of biprism\n",
+"y1 = 20; // Distance of biprism from the source, cm\n",
+"y2 = 125; // Distance of biprism from the screen, cm\n",
+"D = y1 + y2; // Distance between slits and the screen, cm\n",
+"d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm\n",
+"b = 0.025; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"lambda = b*d/D; // Wavelength of light used, cm\n",
+"printf('\nThe wavelength of light used to illuminate slits = %4d angstrom', lambda/1e-08);\n",
+"// Result\n",
+"// The wavelength of light used to illuminate slits = 6018 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: Vertex_angle_of_Fresnel_biprism.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.18:: Page-2.15 (2009)\n",
+"clc; clear;\n",
+"mu = 1.5; // Refractive index of biprism\n",
+"lambda = 6600e-008; // Wavelength of light used, cm\n",
+"y1 = 40; // Distance of biprism from the source, cm\n",
+"y2 = 175; // Distance of biprism from the screen, cm\n",
+"D = y1 + y2; // Distance between slits and the screen, cm\n",
+"b = 0.04; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"// As d = 2*(mu-1)*alpha*y1, solving for alpha\n",
+"alpha = lambda*D/(b*2*(mu-1)*y1) // Acute angle of the biprism, radian\n",
+"theta = (%pi-2*alpha); // Vertex angle of the biprism, radian\n",
+"printf('\nThe vertex angle of the biprism = %6.2f degrees', theta*180/%pi);\n",
+"// Result\n",
+"// The vertex angle of the biprism = 178.98 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: Order_of_visible_fringe_for_changed_wavelength_of_light.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.19: : Page-2.16 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 7000e-008; // Original wavelength of light, cm\n",
+"lambda2 = 5000e-008; // New wavelength of light, cm\n",
+"n1 = 10; // Order of the fringes with original wavelength\n",
+"// As x = n*lambda*D/d, so n*lambda = constant\n",
+"// n1*lambda1 = n2*lambda2, solving for n2\n",
+"n2 = n1*lambda1/lambda2; // Order of visible fringe for changed wavelength of light\n",
+" \n",
+"printf('\nThe order of visible fringe for changed wavelength of light = %2d', ceil(n2));\n",
+"// Result\n",
+"// The order of visible fringe for changed wavelength of light = 14 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Slit_separation_in_Double_Slit_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.1:: Page-2.9 (2009)\n",
+"clc; clear;\n",
+"lambda = 5893e-008; // Wavelength of light used, m\n",
+"D = 200; // Distance of the source from the screen, m\n",
+"b = 0.2; // Fringe separation, cm\n",
+"d = lambda*D/b; // Separation between the slits, cm\n",
+"\n",
+"printf('\nThe separation between the slits = %3.1e cm', d);\n",
+"\n",
+"// Result \n",
+"// The separation between the slits = 5.9e-002 cm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: Angle_of_vertex_of_biprism.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.20:: Page-2.16 (2009)\n",
+"clc; clear;\n",
+"y1 = 40; // Distance between biprism from the slit, cm\n",
+"D = 160; // Distance between slit and the screen, cm\n",
+"mu = 1.52; // Refractive index of material of the prism\n",
+"lambda = 5893e-008; // Wavelength of light used, cm\n",
+"b = 0.01; // Fringe width, cm\n",
+"// As b = lambda*D/d, solving for d\n",
+"d = lambda*D/b; // Distance between virtual sources, cm\n",
+"// But d = 2*y1*(mu-1)*alpha, solving for alpha\n",
+"alpha = d/(2*y1*(mu-1))*180/%pi; // Angle of biprism, degrees\n",
+"theta = 180-2*alpha; // Angle of vertex of biprism, degrees\n",
+"printf('\nThe angle of vertex of biprism = %5.1f degree', theta);\n",
+"// Result \n",
+"// The angle of vertex of biprism = 177.4 degree "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: Separation_between_two_coherent_sources.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.21: : Page-2.16 (2009)\n",
+"clc; clear;\n",
+"lambda = 6000e-008; // Wavelength of light used, cm\n",
+"D = 100; // Distance between slits and the screen, cm\n",
+"b = 0.05; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"d = lambda*D/b; // Distance between coherent sources, cm\n",
+"printf('\nThe distance between coherent sources = %3.1f mm', d/1e-01);\n",
+"// Result\n",
+"// The distance between coherent sources = 1.2 mm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22: Refractive_index_of_the_glass_sheet.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.22:: Page-2.19 (2009)\n",
+"clc; clear;\n",
+"t = 3.2e-04; // Thickness of the glass sheet, cm\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"n = 5; // Order of interference fringes\n",
+"// As path difference (mu - 1)*t = n*lambda\n",
+"mu = n*lambda/t + 1; // Refractive indexof the glass sheet\n",
+"\n",
+"printf('\nThe refractive index of the glass sheet= %4.2f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive indexof the glass sheet= 1.86 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23: Refractive_index_of_material_of_sheet.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.23:: Page-2.19 (2009)\n",
+"clc; clear;\n",
+"t = 2.1e-03; // Thickness of the glass sheet, cm\n",
+"lambda = 5400e-008; // Wavelength of light used, cm\n",
+"n = 11; // Order of interference fringes\n",
+"// As path difference, (mu - 1)*t = n*lambda\n",
+"mu = n*lambda/t + 1; // Refractive index of the glass sheet\n",
+"\n",
+"printf('\nThe refractive index of the glass sheet = %4.2f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the glass sheet= 1.28 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.24: Wavelength_of_light_used_in_biprism_arrangement.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.24:: Page-2.19 (2009)\n",
+"clc; clear;\n",
+"t = 9.21e-05; // Thickness of the mica sheet, cm\n",
+"mu = 1.5; // Refractive index of material of sheet\n",
+"n = 1; // Order of interference fringes\n",
+"// As path difference, (mu - 1)*t = n*lambda, solving for lambda\n",
+"lambda = (mu - 1)*t/n; // Wavelength of light used, cm\n",
+"\n",
+"printf('\nThe wavelength of light used = %5.3e cm', lambda);\n",
+"\n",
+"// Result \n",
+"// The wavelength of light used = 4.605e-005 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.25: Thickness_of_the_transparent_sheet.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.25:: Page-2.19 (2009)\n",
+"clc; clear;\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"mu = 1.5; // Refractive index of material sheet\n",
+"// As shift = 9*lambda*D/d = D/d*(mu - 1)*t, solving for t\n",
+"t = 9*lambda/(mu - 1); // Thickness of the glass sheet, cm\n",
+"printf('\nThe thickness of the glass sheet = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of the glass sheet = 1.06e-003 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.26: Thickness_of_the_transparent_sheet_from_fringe_shift.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.26:: Page-2.20 (2009)\n",
+"clc; clear;\n",
+"lambda = 5400e-008; // Wavelength of light used, cm\n",
+"mu = 1.7; // Refractive index of material sheet convering the first slit\n",
+"mu_prime = 1.5; // Refractive index of material sheet convering the seecond slit\n",
+"// As shift, S = D/d*(mu - mu_prime)*t = b/lambda*(mu - mu_prime)*t, solving for t\n",
+"t = 8*lambda/(mu-mu_prime) // Thickness of the glass sheet, cm\n",
+"\n",
+"printf('\nThe thickness of the glass sheet = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of the glass sheet = 2.16e-003 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.27: Refractive_index_of_thin_mica_sheet.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.27:: Page-2.20 (2009)\n",
+"clc; clear;\n",
+"t = 21.5e-05; // Thickness of the glass sheet, cm\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"n = 1; // Order of interference fringes\n",
+"// As path difference, (mu - 1)*t = n*lambda\n",
+"mu = n*lambda/t + 1; // Refractive indexof the glass sheet\n",
+"\n",
+"printf('\nThe refractive index of the glass sheet = %5.3f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the glass sheet = 1.274 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.28: Wavelength_of_light_used_in_double_slit_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.28:: Page-2.20 (2009)\n",
+"clc; clear;\n",
+"D = 1; // For simplicity assume distance between source and slits to be unity, unit\n",
+"d = 1; // For simplicity assume slit separation to be unity, unit\n",
+"t = 2.964e-06; // Thickness of the mica sheet, cm\n",
+"mu = 1.5; // Refractive index of material of shee\n",
+"L = poly(0, 'L');\n",
+"// As b = b_prime or 2.25*D*L/d = D/d*(mu-1)*t, or we may write\n",
+"L = roots(2.25*D*L/d-D/d*(mu-1)*t); // Wavelength of the light used, m\n",
+"\n",
+"printf('\nThe wavelength of the light used = %4.0f angstrom', L/1e-010);\n",
+"\n",
+"// Result \n",
+"// The wavelength of the light used = 6587 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.29: Thickness_of_mica_sheet_from_central_fringe_shift.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.29:: Page-2.21 (2009)\n",
+"clc; clear;\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"n = 5; // Order of interference fringes\n",
+"mu = 1.5; // Refractive index of the mica sheet\n",
+"// As path difference, (mu - 1)*t = n*lambda, solving for t\n",
+"t = n*lambda/(mu-1); // Thickness of the mica sheet, cm\n",
+"\n",
+"printf('\nThe thickness of the mica sheet = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of the mica sheet = 5.89e-004 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Wavelength_of_light_in_Young_Double_Slit_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.2:: Page-2.10 (2009)\n",
+"clc; clear;\n",
+"d = 0.2; // Separation between the slits, cm\n",
+"D = 100; // Distance of the source from the screen, m\n",
+"b = 0.35e-01; // Fringe separation, cm\n",
+"lambda = b*d/D; // Wavelength of light used, m\n",
+"printf('\nThe wavelength of the light = %3.1e cm', lambda);\n",
+"\n",
+"// Result \n",
+"// The wavelength of the light = 7.0e-005 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.30: Refractive_index_of_material_from_shifting_fringe_pattern.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.30:: Page-2.21 (2009)\n",
+"clc; clear;\n",
+"b = 1; // For simplicity assume fringe width to be unity, cm\n",
+"S = 30*b; // Fringe shift, cm\n",
+"lambda = 6600e-008; // Wavelength of light used, cm\n",
+"t = 4.9e-003; // Thickness of the film, cm\n",
+"// As S = b/lambda*(mu-1)*t, solving for mu\n",
+"mu = S*lambda/t + 1; // Refractive index of material from shifting fringe pattern\n",
+"\n",
+"printf('\nThe refractive index of material from shifting fringe pattern = %3.1f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive index of material from shifting fringe pattern = 1.4 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.31: EX2_31.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.31:: Page-2.22 (2009)\n",
+"clc; clear;\n",
+"mu1 = 1.55; // Refractive index of mica\n",
+"mu2 = 1.52; // Refractive index of glass\n",
+"t = 0.75e-003; // Thickness of the sheets, m\n",
+"d = 0.25e-02; // Separation between the slits, m\n",
+"lambda = 5896e-010; // Wavelength of light used, m\n",
+"D = 1.5; // Distance between the source ans the slits, m\n",
+"// Fringe width\n",
+"b = lambda*D/d; // Fringe width, m\n",
+"// Optical path difference\n",
+"delta_x = (mu1-1)*t-(mu2-1)*t; // Optical path change, m\n",
+"\n",
+"printf('\nThe fringe width = %3.1e m', b);\n",
+"printf('\nThe optical path change = %5.3e m', delta_x);\n",
+"\n",
+"// Result \n",
+"// The fringe width = 3.5e-004 m\n",
+"// The optical path change = 2.250e-005 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.32: Thickness_of_mica_sheet_from_Fresnel_biprism_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.32:: Page-2.22 (2009)\n",
+"clc; clear;\n",
+"b = 1; // For simplicity assume fringe width to be unity, cm\n",
+"S = 3*b; // Fringe shift, cm\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"mu = 1.6; // Refractive index of the mica sheet\n",
+"// As S = b/lambda*(mu-1)*t, solving for t\n",
+"t = S*lambda/(mu-1); // Thickness of the mica sheet, cm\n",
+"\n",
+"printf('\nThe thickness of the mica sheet = %3.1e m', t/1e+02);\n",
+"\n",
+"// Result \n",
+"// The thickness of the mica sheet = 2.9e-006 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.33: Smallest_thickness_of_glass_plate_for_a_fringe_of_minimum_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.33: : Page-2.26 (2009)\n",
+"clc; clear;\n",
+"mu = 1.5; // Refractive index of glass\n",
+"lambda = 5100e-008; // Wavelength of light used, cm\n",
+"i = 30; // Angle of incidence, degrees\n",
+"n = 1; // Order of interference fringes\n",
+"// From Snell's law, mu = sind(i)/sind(r), solving for r\n",
+"r = asind(sind(i)/mu); // Angle of refraction, degrees\n",
+"// For a dark fringe in reflection, 2*mu*t*cosd(r) = n*lambda, solving for t\n",
+"t = n*lambda/(2*mu*cosd(r)); // Smallest thickness of glass plate for a fringe of minimum intensity, cm\n",
+"printf('\nThe smallest thickness of glass plate for a fringe of minimum intensity = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The smallest thickness of glass plate for a fringe of minimum intensity = 1.80e-005 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.34: The_wavelength_reflected_strongly_from_the_soap_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.34:: Page-2.26 (2009)\n",
+"clc; clear;\n",
+"t = 3.1e-05; // Thickness of the soap film, cm\n",
+"mu = 1.33; // Refractive index of the soap film\n",
+"r = 0; // Angle of refraction of the light ray on the soap film, degrees\n",
+"// For bright fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = (2*n+1)*lambda/2\n",
+"lambda = zeros(3); \n",
+"for n = 1:1:3\n",
+" lambda(n) = 4*mu*t*cosd(r)/(2*(n-1)+1); // Wavelengths for n = 1, 2 and 3\n",
+" if lambda(n) > 4000e-008 & lambda(n) < 7500e-008 then\n",
+" lambda_reflected = lambda(n);\n",
+" end\n",
+"end\n",
+"printf('\nThe wavelength reflected strongly from the soap film = %5.3e cm', lambda_reflected);\n",
+"// Result\n",
+"// The wavelength reflected strongly from the soap film = 5.497e-05 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.35: Order_of_interference_of_the_dark_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.35:: Page-2.27 (2009)\n",
+"clc; clear;\n",
+"t = 3.8e-05; // Thickness of the transparent film, cm\n",
+"mu = 1.5; // Refractive index of the transparent film\n",
+"i = 45; // Angle of incidence of the light ray on the transparent film, degrees\n",
+"lambda = 5700e-008; // Wavelength of light, cm\n",
+"// As mu = sind(i)/sind(r), solving for r\n",
+"r = asind(sind(i)/mu);\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = 2*n*lambda, solving for n\n",
+"n = 2*mu*t*cosd(r)/lambda; // Order of interference of dark band\n",
+"printf('\nThe order of interference of dark band = %d', ceil(n));\n",
+"// Result\n",
+"// The order of interference of dark band = 2velength reflected strongly from the soap film = 5.497e-05 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.36: Absent_wavelength_of_reflected_light_in_the_visible_spectrum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.36:: Page-2.27 (2009)\n",
+"clc; clear;\n",
+"t = 4.5e-05; // Thickness of the soap film, cm\n",
+"mu = 1.33; // Refractive index of the soap film\n",
+"i = 45; // Angle of incidence of the light ray on the soap film, degrees\n",
+"// As mu = sind(i)/sind(r), solving for r\n",
+"r = asind(sind(i)/mu);\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = n*lambda, solving for lambda for different n's\n",
+"lambda = zeros(4); \n",
+"for n = 1:1:4\n",
+" lambda(n) = 2*mu*t*cosd(r)/n; // Wavelengths for n = 1, 2, 3 and 4\n",
+" if lambda(n) > 4000e-008 & lambda(n) < 7500e-008 then\n",
+" lambda_absent = lambda(n);\n",
+" end\n",
+"end\n",
+"printf('\nThe absent wavelength of reflected light in the visible spectrum = %4.2e', lambda_absent);\n",
+"// Result\n",
+"// The absent wavelength of reflected light in the visible spectrum = 5.07e-05 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.37: Minimum_thickness_of_the_plate_that_will_appear_dark_in_the_reflection_pattern.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.37:: Page-2.28 (2009)\n",
+"clc; clear;\n",
+"mu = 1.6; // Refractive index of the mica plate\n",
+"r = 60; // Angle of refraction of the light ray on the mica plate, degrees\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"n = 1; // Order of interference for minimum thickness\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = 2*n*lambda, solving for t\n",
+"t = n*lambda/(2*mu*cosd(r)); // Minimum thickness of the plate that will appear dark in the reflection pattern\n",
+"printf('\nThe minimum thickness of the plate that will appear dark in the reflection pattern = %4.2e cm', t);\n",
+"// Result\n",
+"// The minimum thickness of the plate that will appear dark in the reflection pattern = 3.44e-05 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.38: Thickness_of_the_thin_soap_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.38:: Page-2.28 (2009)\n",
+"clc; clear;\n",
+"mu = 1.33; // Refractive index of the thin soap film\n",
+"lambda1 = 5500e-008; // Wavelength of the first dark fringe, cm\n",
+"lambda2 = 5400e-008; // Wavelength of the consecutive dark fringe, cm\n",
+"i = 30; // Angle of incidence of the light ray on the soap film, degrees\n",
+"// For overlapping fringes, \n",
+"// n*lambda1 = (n+1)*lambda2, solving for n\n",
+"n = lambda2/(lambda1-lambda2); // Order of interference fringes\n",
+"// As mu = sind(i)/sind(r), solving for r\n",
+"r = asind(sind(i)/mu);\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = 2*n*lambda1, solving for t\n",
+"t = n*lambda1/(2*mu*cosd(r)); // Thickness of the thin soap film\n",
+"printf('\nThe thickness of the thin soap film = %5.3e cm', t);\n",
+"// Result\n",
+"// The thickness of the thin soap film = 1.205e-03 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.39: Order_of_interference_for_which_light_is_strongly_reflected.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.39:: Page-2.29 (2009)\n",
+"clc; clear;\n",
+"t = 0.75e-06; // Thickness of the glass plate, m\n",
+"mu = 1.5; // Refractive index of the glass plate\n",
+"lambda1 = 4000e-010; // First wavelength of visible range, cm\n",
+"lambda2 = 7000e-010; // Last wavelength of visible range, cm\n",
+"r = 0; // Angle of refraction for normal incidence, degrees\n",
+"n = zeros(2);\n",
+"// For bright fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for n\n",
+"// For lambda1\n",
+"n(1) = (4*mu*t*cosd(r)/lambda1-1)/2;\n",
+"// For lambda2\n",
+"n(2) = (4*mu*t*cosd(r)/lambda2-1)/2;\n",
+"printf('\nFor n = %d and n = %d the light is strongly reflected.', n(1), ceil(n(2)));\n",
+"// Result\n",
+"// For n = 5 and n = 3 the light is strongly reflected. "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Ratio_of_maximum_intensity_to_minimum_intensity_of_interference_fringes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.3:: Page-2.10 (2009)\n",
+"clc; clear;\n",
+"I2 = 1; // For simplicity assume intensity from slit 2 to be unity, W/sq-m\n",
+"I1 = I2*25; // Intensity from slit 1, W/sq-m\n",
+"I_ratio = I1/I2; // Intensity ratio\n",
+"a_ratio = sqrt(I_ratio); // Amplitude ratio\n",
+"a2 = 1; // For simplicity assume amplitude from slit 2 to be unity, m\n",
+"a1 = a_ratio*a2; // Amplitude from slit 1, m\n",
+"I_max = (a1 + a2)^2; // Maximum intensity of wave during interference, W/sq-m\n",
+"I_min = (a1 - a2)^2; // Minimum intensity of wave during interference, W/sq-m\n",
+"cf = 4; // Common factor\n",
+"printf('\nThe ratio of maximum intentisy to minimum intensity of interference fringes = %d/%d', I_max/cf, I_min/cf); \n",
+"\n",
+"// Result \n",
+"// The ratio of maximum intentisy to minimum intensity of interference fringes = 9/4 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.40: Minimum_thickness_of_the_film_for_which_light_is_strongly_reflected.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.40:: Page-2.30 (2009)\n",
+"clc; clear;\n",
+"mu = 1.45; // Refractive index of the film\n",
+"lambda = 5500e-010; // First wavelength of visible range, cm\n",
+"r = 0; // Angle of refraction for normal incidence, degrees\n",
+"n = 0; // Order of interference is zero for minimum thickness\n",
+"// For bright fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for t\n",
+"t = (2*n+1)*lambda/(4*mu*cosd(r)); // Minimum thickness of the film for which light is strongly reflected\n",
+"printf('\nThe minimum thickness of the film for which light is strongly reflected = %4.2e cm', t);\n",
+"// Result\n",
+"// The minimum thickness of the film for which light is strongly reflected = 9.48e-08 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.41: Thickness_of_the_soap_film_for_dark_fringe_in_reflected_pattern.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.41:: Page-2.30 (2009)\n",
+"clc; clear;\n",
+"mu = 5/4; // Refractive index of the film\n",
+"lambda = 5890e-010; // Wavelength of visible light, cm\n",
+"i = 45; // Angle of incidence, degrees\n",
+"n = 1; // Order of interference is unity for minimum thickness in dark reflected pattern\n",
+"// As mu = sind(i)/sind(r), solving for r\n",
+"r = asind(sind(i)/mu);\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = n*lambda, solving for t\n",
+"t = n*lambda/(2*mu*cosd(r)); // Thickness of the soap film for dark fringe in reflected pattern\n",
+"printf('\nThe thickness of the soap film for dark fringe in reflected pattern = %5.3e cm', t);\n",
+"// Result\n",
+"// The thickness of the soap film for dark fringe in reflected pattern = 2.857e-07 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.42: Wavelength_in_the_visible_range_which_is_intensified_in_the_reflected_beam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.42:: Page-2.30 (2009)\n",
+"clc; clear;\n",
+"mu = 1.5; // Refractive index of the plate\n",
+"t = 0.5e-006; // Thickness of the plate, m\n",
+"r = 0; // Angle of refraction for normal incidence, degrees\n",
+"// For bright fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for lambda for different n's\n",
+"lambda = zeros(4); \n",
+"for n = 0:1:3\n",
+" lambda(n+1) = 4*mu*t*cosd(r)/(2*n+1); // Wavelengths for n = 0, 1, 2 and 3\n",
+" lambda_strong = lambda(n+1);\n",
+" if lambda(n+1) >= 4000e-010 & lambda(n+1) <= 7500e-010 then\n",
+" if lambda_strong > lambda(n+1) then // Search for the stronger wavelength\n",
+" lambda_strong = lambda(n+1);\n",
+" end\n",
+" end\n",
+"end\n",
+"printf('\nFor n = %d, %4.0f angstrom will be reflected strongly', n, lambda_strong/1e-010);\n",
+"// Result\n",
+"// For n = 3, 4286 angstrom will be reflected strongly "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.43: Thickness_of_the_film_with_incident_white_light.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.43:: Page-2.31(2009)\n",
+"clc; clear;\n",
+"mu = 1.33; // Refractive index of the film\n",
+"i = asind(0.8); // Angle of refraction for normal incidence, degrees\n",
+"// As mu = sind(i)/sind(r), solving for r\n",
+"r = asind(sind(i)/mu);\n",
+"lambda1 = 6100e-010; // First wavelength of dark band, m\n",
+"lambda2 = 6000e-010; // Second wavelength of dark band, m\n",
+"// For consecutive overlapping wavelenghts\n",
+"// n*lambda1 = (n+1)*lambda2, solving for n\n",
+"n = lambda2/(lambda1-lambda2);\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = n*lambda1, solving for t\n",
+"t = n*lambda1/(2*mu*cosd(r)); // Thickness of the film with incident white light. m\n",
+"printf('\nThickness of the film with incident white light = %3.1e m', t);\n",
+"// Result\n",
+"// Thickness of the film with incident white light = 1.7e-05 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.44: Thickness_of_the_film_with_parallel_beam_of_yellow_light.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.44:: Page-2.31(2009)\n",
+"clc; clear;\n",
+"mu = 1.5; // Refractive index of the film\n",
+"i = 45; // Angle of incidence, degrees\n",
+"// As mu = sind(i)/sind(r), solving for r\n",
+"r = asind(sind(i)/mu);\n",
+"lambda = 5500e-010; // Wavelength of parallel beam of light, m\n",
+"n = 15; // Order of dark band\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = n*lambda, solving for t\n",
+"t = n*lambda/(2*mu*cosd(r)); // Thickness of the film with incident parallel beam of light. m\n",
+"printf('\nThe thickness of the film with paralle beam of yellow light = %4.2e m', t);\n",
+"// Result\n",
+"// The thickness of the film with paralle beam of yellow light = 3.12e-06 m"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.46: Refractive_index_of_oil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.46:: Page-2.33(2009)\n",
+"clc; clear;\n",
+"V = 0.58e-006; // Volume of oil, metre cube\n",
+"A = 2.5; // Area of water surface, metre square\n",
+"t = V/A; // Thickness of film, m\n",
+"r = 0; // Angle of refraction for normal incidence, degrees\n",
+"n = 1; // Order of interference for minimum thickness\n",
+"lambda = 4700e-010; // Wavelength of light used, m\n",
+"// For dark fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = n*lambda, solving for mu\n",
+"mu = n*lambda/(2*t*cosd(r)); // Refractive index of oil\n",
+"printf('\nThe refractive index of oil = %5.3f', mu);\n",
+"// Result\n",
+"// The refractive index of oil = 1.013 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.47: EX2_47.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.47:: Page-2.33(2009)\n",
+"clc; clear;\n",
+"mu = 1.46; // Refractive index of the soap film\n",
+"lambda = 6000e-010; // Wavelength of light used, m\n",
+"r = 0; // Angle of refraction for normal incidence, degrees\n",
+"n = 0; // Order of interference for minimum thickness\n",
+"// For bright fringe in reflected pattern,\n",
+"// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for mu\n",
+"t = (2*n+1)*lambda/(4*mu*cosd(r)); // Thickness of soap film, m\n",
+"printf('\nThe thickness of soap film = %5.3e m', t);\n",
+"// Result\n",
+"// The thickness of soap film = 1.027e-07 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.48: Wavelength_of_light_falling_on_wedge_shaped_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.48: : Page-2.35(2009)\n",
+"clc; clear;\n",
+"mu = 1.4; // Refractive index of the film\n",
+"alpha = 1.07e-004; // Acute angle of the wedge, radian\n",
+"b = 0.2; // Fringe width, cm\n",
+"// As b = lambda/(2*mu*alpha), solving for lambda\n",
+"lambda = 2*mu*alpha*b; // Wavelength of light falling on wedge shaped film, m\n",
+"printf('\nThe wavelength of light falling on wedge shaped film = %4d ansgtrom', lambda/1e-008);\n",
+"// Result\n",
+"// The wavelength of light falling on wedge shaped film = 5991 ansgtrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.49: Difference_between_the_thicknesses_of_the_films.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.49:: Page-2.35(2009)\n",
+"clc; clear;\n",
+"mu = 1.4; // Refractive index of the film\n",
+"lambda = 5500e-008; // Wavelength of the light, cm\n",
+"// As alpha = (delta_t)/x and x = 10*b; b = lambda/(2*mu*alpha), solving for dt\n",
+"delta_t = 10*lambda/(2*mu); // Difference between the thicknesses of the films, cm\n",
+"printf('\nDifference between the thicknesses of the films = %4.2e cm', delta_t);\n",
+"// Result\n",
+"// Difference between the thicknesses of the films = 1.96e-04 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Wavelength_of_light_from_monochromatic_coherent_sources.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.4:: Page-2.10 (2009)\n",
+"clc; clear;\n",
+"d = 0.02; // Separation between the slits, cm\n",
+"D = 100; // Distance of the source from the screen, m\n",
+"n = 6; // No. of bright fringe from the centre\n",
+"x = 1.22; // Position of 6th bright fringe, cm\n",
+"lambda = x*d/(n*D); // Wavelength of light used, m\n",
+"printf('\nThe wavelength of the light from coherent sources = %5.3e cm', lambda);\n",
+"\n",
+"// Result \n",
+"// The wavelength of the light from coherent sources = 4.067e-005 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.50: Angle_of_thin_wedge_shaped_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.50:: Page-2.36(2009)\n",
+"clc; clear;\n",
+"mu = 1.6; // Refractive index of the film\n",
+"lambda = 5500e-008; // Wavelength of the light, cm\n",
+"b = 0.1; // Fringe width, cm\n",
+"// As b = lambda/(2*mu*alpha), solving for alpha\n",
+"alpha = lambda/(2*mu*b); // Angle of thin wedge shaped film, radian\n",
+"printf('\nAngle of thin wedge shaped film = %3.1e radian', alpha);\n",
+"// Result\n",
+"// Angle of thin wedge shaped film = 1.7e-04 radian "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.51: Wavelength_of_light_used_to_illuminate_a_wedge_shaped_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.51:: Page-2.36(2009)\n",
+"clc; clear;\n",
+"mu = 1.5; // Refractive index of the film\n",
+"b = 0.20; // Fringe width, cm\n",
+"theta = 25/(60*60)*%pi/180; // Angle of the wedge, radian\n",
+"// As b = lambda/(2*mu*theta), solving for lambda\n",
+"lambda = 2*mu*b*theta; // Wavelength of light used to illuminate a wedge shaped film, cm\n",
+"printf('\nThe wavelength of light used to illuminate a wedge shaped film = %4d angstrom', lambda/1e-008);\n",
+"// Result\n",
+"// The wavelength of light used to illuminate a wedge shaped film = 7272 angstrom\n",
+"// The answer is given wrong in the textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.52: Thickness_of_the_wire_separating_two_glass_surfaces.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.52:: Page-2.36(2009)\n",
+"clc; clear;\n",
+"lambda = 5893e-010; // Wavelength of light used, m\n",
+"mu = 1; // Refractive index of the glass\n",
+"b = 1; // Assume fringe width to be unity, cm\n",
+"// As b = l/20, solving for l\n",
+"l = b*20; // Length of the film, m\n",
+"// As b = lambda/(2*mu*theta) and theta = t/l, solving for t\n",
+"t = lambda*l/(2*mu); // Thickness of the wire separating two glass surfaces, m\n",
+"printf('\nThe thickness of the wire separating two glass surfaces = %4.2e m', t);\n",
+"// Result\n",
+"// The thickness of the wire separating two glass surfaces = 5.89e-06 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.53: Angle_of_the_wedge_shaped_air_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.53:: Page-2.37(2009)\n",
+"clc; clear;\n",
+"mu = 1; // Refractive index of the air film\n",
+"b = 1.5/25; // Fringe width, cm\n",
+"lambda = 5893e-008; // Wavelength of light used to illuminate a wedge shaped film, cm\n",
+"// As b = lambda/(2*mu*theta), solving for theta\n",
+"theta = lambda/(2*mu*b); // Angle of the wedge, radian\n",
+"printf('\nThe angle of the wedge shaped air film = %5.3f degrees', theta*180/%pi);\n",
+"// Result\n",
+"// The angle of the wedge shaped air film = 0.028 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.54: Acute_angle_of_the_wedge_shaped_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.54:: Page-2.37(2009)\n",
+"clc; clear;\n",
+"mu = 1.45; // Refractive index of the film\n",
+"b = 1/10; // Fringe width, cm\n",
+"lambda = 6600e-008; // Wavelength of light used to illuminate a wedge shaped film, cm\n",
+"// As b = lambda/(2*mu*theta), solving for theta\n",
+"theta = lambda/(2*mu*b); // Angle of the wedge, radian\n",
+"printf('\nThe acute angle of the wedge shaped film = %6.4f degrees', theta*180/%pi);\n",
+"// Result\n",
+"// The acute angle of the wedge shaped film = 0.0130 degrees"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.55: Diameter_of_nth_dark_ring_due_to_first_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.55:: Page-2.46(2009)\n",
+"clc; clear;\n",
+"lambda1 = 6000e-008; // First visible wavelength, cm\n",
+"lambda2 = 4500e-008; // Second visible wavelength, cm\n",
+"R = 100; // Radius of curvature of the lens, cm\n",
+"// As diameter of nth dark ring due to lambda1 is\n",
+"// D_n^2 = 4*n*R*lambda1 and D_nplus1^ = 4*(n+1)*R*lambda2, so that D_n^2 = D_nplus1^2 gives\n",
+"n = lambda2/(lambda1-lambda2); // Order of interference for dark fringes\n",
+"D_n = sqrt(4*n*R*lambda1); // Diameter of nth dark ring due to lambda1 \n",
+"printf('\nThe diameter of nth dark ring due to wavelength of %4d angstrom = %4.2f cm', lambda1/1e-008, D_n);\n",
+"// Result\n",
+"// The diameter of nth dark ring due to wavelength of 6000 angstrom = 0.27 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.56: Diameter_of_fifteenth_dark_ring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.56:: Page-2.46(2009)\n",
+"clc; clear;\n",
+"R = 1; // For simplicity assume radius of curvature of the lens to be unity, cm\n",
+"D_n = 0.251; // Diameter of 3rd dark ring, cm\n",
+"D_nplusp = 0.548; // Diameter of 9th dark ring, cm\n",
+"n = 3; // Order of 3rd Newton ring\n",
+"p = 9 - n; // Order of 6th Newton ring from 3rd ring\n",
+"// As D_nplusp^2 - D_n^2 = 4*p*R*lambda, solving for lambda\n",
+"lambda = (D_nplusp^2 - D_n^2)/(4*p*R); // Wavelength of light used\n",
+"D_15 = sqrt(D_n^2+4*(15-n)*lambda*R); // Diameter of 15th dark ring, cm\n",
+"printf('\nThe diameter of 15th dark ring = %5.3f cm', D_15);\n",
+"// Result\n",
+"// The diameter of 15th dark ring = 0.733 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.57: Order_of_a_dark_ring_having_thrice_the_diameter_of_the_thirtieth_ring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.57: : Page-2.47(2009)\n",
+"clc; clear;\n",
+"R = 1; // For simplicity assume radius of curvature of the lens to be unity, cm\n",
+"n = 30; // Order of 3rd Newton ring\n",
+"D_30 = 1; // Assume diameter of thirtieth ring to be unity, cm\n",
+"// As D_30^2 = 4*n*R*lambda, solving for lambda\n",
+"lambda = D_30^2/(4*n*R); // Wavelength of light used, cm\n",
+"D_n = 3*D_30; // Diameter of nth dark ring having thrice the diameter of the thirtieth ring, cm\n",
+"n = D_n^2/(4*R*lambda); // Order of a dark ring having thrice the diameter of the thirtieth ring\n",
+"printf('\nThe order of the dark ring having thrice the diameter of the thirtieth ring = %3d', n);\n",
+"// Result\n",
+"// The order of the dark ring having thrice the diameter of the thirtieth ring = 270 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.58: Radius_of_curvature_of_lens_and_thickness_of_air_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.58:: Page-2.47(2009)\n",
+"clc; clear;\n",
+"n = 15; // Order of 15rd Newton ring\n",
+"D_15 = 0.75; // Diameter of fifteenth dark ring, cm\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"// As D_15^2 = 4*15*R*lambda, solving for R\n",
+"R = D_15^2/(4*15*lambda); // Radius of curvature of lens, cm\n",
+"// For dark ring, 2*t = n*lambda, solving for t\n",
+"t = n*lambda/2; // Thickness of air film, cm\n",
+"printf('\nThe radius of curvature of lens = %5.1f cm', R);\n",
+"printf('\nThe thickness of air film = %3.1e cm', t);\n",
+"// Result\n",
+"// The radius of curvature of lens = 159.2 cm\n",
+"// The thickness of air film = 4.4e-004 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.59: Refractive_index_of_the_liquid.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.59:: Page-2.47(2009)\n",
+"clc; clear;\n",
+"D_15 = 1.62; // Diameter of 15th dark ring with air film, cm\n",
+"D_15_prime = 1.47; // Diameter of 15th dark ring with liquid, cm\n",
+"R = 1; // For simplicity assume radius of curvature to be unity, cm\n",
+"n = 15; // Order of 15rd Newton ring\n",
+"// As for ring with air film, D_15^2 = 4*15*R*lambda, solving for lambda\n",
+"lambda = D_15^2/(4*15*R); // Wavelength of light used, cm\n",
+"// As for ring with liquid, D_15_prime^2 = 4*15*R*lambda/mu, solving for mu\n",
+"mu = 4*15*R*lambda/D_15_prime^2; // Refractive index of the liquid\n",
+"printf('\nThe refractive index of the liquid = %4.2f', mu)\n",
+"// Result\n",
+"// The refractive index of the liquid = 1.21 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Separation_between_fourth_order_dark_fringes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.5:: Page-2.10 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 5890e-008; // Wavelength of D1 line of sodium, cm\n",
+"lambda2 = 5896e-008; // Wavelength of D2 line of sodium, cm\n",
+"D = 120; // Distance between source and the screen, cm\n",
+"d = 0.025; // Separation between the slits, cm\n",
+"n = 4; // Order of dark fringe\n",
+"x1 = (2*n+1)*lambda1*D/(2*d); // Position of 4th dark fringe due to D1 line, cm\n",
+"x2 = (2*n+1)*lambda2*D/(2*d); // Position of 4th dark fringe due to D2 line, cm\n",
+"delta_x = x2-x1; // Fringe separation, cm\n",
+"printf('\nThe separation between fourth order dark fringes = %4.2e cm', x2-x1);\n",
+"// Result\n",
+"// The separation between fourth order dark fringes = 1.30e-03 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.60: Wavelength_of_light_used_in_Newton_rings_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.60:: Page-2.48(2009)\n",
+"clc; clear;\n",
+"D_10 = 0.48; // Diameter of 10th dark ring with air film, cm\n",
+"D_3 = 0.291; // Diameter of 3rd dark ring with air film, cm\n",
+"p = 7; // Order of the 10th ring next to the 3rd ring\n",
+"R = 90; // Radius of curvature of the lens, cm\n",
+"lambda = (D_10^2-D_3^2)/(4*p*R); // Wavelength of light used in Newton rings experiment\n",
+"printf('\nThe wavelength of light used in Newton rings experiment = %4d angstrom', lambda/1e-008);\n",
+"// Result\n",
+"// The wavelength of light used in Newton rings experiment = 5782 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.61: Diameter_of_fifteenth_bright_ring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.61:: Page-2.48(2009)\n",
+"clc; clear;\n",
+"R1 = 200; // Radius of curvature of the convex surface, cm\n",
+"R2 = 250; // Radius of curvature of the concave surface, cm\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"n = 15; // Order of interfernce Newton ring\n",
+"// As r_n^2*(1/R1-1/R2) = (2*n-1)*lambda/2, solving for r_n\n",
+"r_n = sqrt((2*n-1)*lambda/(2*(1/R1-1/R2))); // Radius of nth ring, cm\n",
+"D_15 = 2*r_n; // Daimeter of 15th bright ring, cm\n",
+"printf('\nThe daimeter of 15th bright ring = %4.2f cm', D_15);\n",
+"// Result\n",
+"// The daimeter of 15th bright ring = 1.79 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.62: Wavelength_of_light_used_in_Newton_rings_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.62:: Page-2.49(2009)\n",
+"clc; clear;\n",
+"R = 80; // Radius of curvature of the convex surface, cm\n",
+"D5 = 0.192; // Diameter of 5th dark ring, cm\n",
+"D25 = 0.555; // Diameter of 25th dark ring, cm\n",
+"n = 5; // Order of interfernce Newton ring\n",
+"P = 25 - n;\n",
+"lambda = (D25^2 - D5^2)/(4*P*R); // Wavelength of light used, cm\n",
+"printf('\nThe wavelength of light used = %5.3e cm', lambda);\n",
+"// Result\n",
+"// The wavelength of light used = 4.237e-005 cm \n",
+"// The expression for lambda is given wrong in the textbook but solved correctly"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.63: Diameter_of_fifteenth_dark_Newton_ring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.63:: Page-2.49(2009)\n",
+"clc; clear;\n",
+"R1 = 4; // Radius of curvature of the convex surface, m\n",
+"R2 = 5; // Radius of curvature of the concave surface, m\n",
+"lambda = 6600e-010; // Wavelength of light used, cm\n",
+"n = 15; // Order of Newton ring\n",
+"// As D_n^2*(1/R1-1/R2) = 4*n*lambda, solving for D_n\n",
+"D_15 = sqrt(4*n*lambda/(1/R1-1/R2)); // Diameter of 15th dark ring, cm\n",
+"printf('\nThe diameter of %dth dark ring = %4.2e m', n, D_15);\n",
+"// Result\n",
+"// The diameter of 15th dark ring = 2.81e-002 m \n",
+"// The answer is given wrong in the textbook (the square root is not solved)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.64: Diameter_of_fifteenth_dark_ring_due_to_first_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.64:: Page-2.49(2009)\n",
+"clc; clear;\n",
+"lambda1 = 6000e-008; // First visible wavelength, cm\n",
+"lambda2 = 4500e-008; // Second visible wavelength, cm\n",
+"R = 120; // Radius of curvature of the lens, cm\n",
+"// As diameter of nth dark ring due to lambda1 is\n",
+"// D_n^2 = 4*n*R*lambda1 and D_nplus1^ = 4*(n+1)*R*lambda2, so that D_n^2 = D_nplus1^2 gives\n",
+"n = lambda2/(lambda1-lambda2); // Order of interference for dark fringes\n",
+"printf('\nThe value of n = %d', n);\n",
+"n = 15; // Order of interference fringe\n",
+"D_n = sqrt(4*n*R*lambda1); // Diameter of nth dark ring due to lambda1 \n",
+"printf('\nThe diameter of 15th dark ring due to wavelength of %4d angstrom = %4.2f cm', lambda1/1e-008, D_n);\n",
+"// Result\n",
+"// The value of n = 3\n",
+"// The diameter of 15th dark ring due to wavelength of 6000 angstrom = 0.66 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.65: Refractive_index_of_the_liquid_filled_into_container.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.65:: Page-2.49(2009)\n",
+"clc; clear;\n",
+"lambda = 5896e-008; // Wavelength of light used, cm\n",
+"R = 100; // Radius of curvature of the lens, cm\n",
+"D10 = 0.4; // Diametre of 10th dark ring, cm\n",
+"n = 10; // Order of Newton ring\n",
+"// As for a dark ring, 2*mu*t = n*lambda and 2*t = (D10/2)^2/R, solving for mu\n",
+"mu = 4*n*lambda*R/D10^2; // Refractive index of the liquid filled into container\n",
+"printf('\nThe refractive index of the liquid filled into container = %4.2f', mu);\n",
+"// Result\n",
+"// The refractive index of the liquid filled into container = 1.47 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.67: Refractive_index_of_the_liquid.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.67:: Page-2.50(2009)\n",
+"clc; clear;\n",
+"Dn = 1.8; // Diameter of 15th dark ring, cm\n",
+"Dn_prime = 1.67; // Diameter of 15th dark ring with liquid, cm\n",
+"mu = (Dn/Dn_prime)^2; // Refractive index of the liquid\n",
+"printf('\nThe refractive index of the liquid = %4.2f', mu);\n",
+"// Result\n",
+"// The refractive index of the liquid = 1.16 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.68: Diameter_of_eighteenth_dark_ring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.68:: Page-2.51(2009)\n",
+"clc; clear;\n",
+"R = 1; // For simplicity assume radius of curvature to be unity, cm\n",
+"D8 = 0.45; // Diameter of 8th dark ring, cm\n",
+"D15 = 0.81; // Diameter of 15th dark ring, cm\n",
+"n = 8; // Order of 8th Newton ring\n",
+"p = 7; // Order of 7th Newton ring after 8th ring\n",
+"lambda = (D15^2-D8^2)/(4*p*R); // Wavelength of light used, cm\n",
+"// As D18^2-D15^2 = 4*p*lambda*R\n",
+"p = 3; // For 18th and 15th rings\n",
+"D18 = sqrt(D15^2+4*p*lambda*R); // Diameter of 18th ring, cm\n",
+"printf('\nThe diameter of 18th dark ring = %6.4f cm', D18);\n",
+"// Result\n",
+"// The diameter of 18th dark ring = 0.9222 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.69: EX2_69.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.69:: Page-2.51(2009)\n",
+"clc; clear;\n",
+"R = 100; // Radius of curvature of plano-convex lens, cm\n",
+"D15 = 0.590; // Diameter of 15th dark ring, cm\n",
+"D5 = 0.336; // Diameter of 5th dark ring, cm\n",
+"p = 10; // Order of 10th Newton ring after 5th ring\n",
+"lambda = (D15^2-D5^2)/(4*p*R); // Wavelength of light used, cm\n",
+"printf('\nThe wavelength of light used = %4.0f ansgtrom', lambda/1e-008);\n",
+"// Result\n",
+"// The wavelength of light used = 5880 ansgtrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Distance_between_two_coherent_sources.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.6:: Page-2.11 (2009)\n",
+"clc; clear;\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"Y1 = 10; // Distance of biprism from the source, cm\n",
+"Y2 = 90; // Distance of biprism from the screen, cm\n",
+"D = Y1 + Y2; // Distance between slits and the screen, cm\n",
+"b = 8.526e-02; // Fringe width, cm\n",
+"d = lambda*D/b; // Separation between the slits, cm\n",
+"printf('\nThe distance between two coherent sources = %4.2e cm', d);\n",
+"// Result\n",
+"// The distance between two coherent sources = 6.45e-02 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.70: Wavelength_of_monochromatic_light_used_in_Michelson_Interferometer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.70:: Page-2.57(2009)\n",
+"clc; clear;\n",
+"N = 250; // Number of fringes crossing the field of view\n",
+"delta_x = 0.0595e-01; // Displacement in movable mirror, cm\n",
+"// As N*lambda/2 = delta_x, solving for lambda\n",
+"lambda = 2*delta_x/N; // Wavelength of light used, cm\n",
+"printf('\nThe wavelength of monochromatic light used = %4.0f ansgtrom', lambda/1e-008);\n",
+"// Result\n",
+"// The wavelength of monochromatic light used = 4760 ansgtrom \n",
+"// Answer is given wrong in the textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.71: Number_of_fringes_that_passes_across_the_cross_wire_of_telescope.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.71:: Page-2.58(2009)\n",
+"clc; clear;\n",
+"delta_x = 0.02559e-01; // Displacement in movable mirror, cm\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"// As N*lambda/2 = delta_x, solving for N\n",
+"N = 2*delta_x/lambda; // Number of fringes crossing the field of view\n",
+"printf('\nThe number of fringes that passes across the cross wire of telescope = %2d', ceil(N));\n",
+"// Result\n",
+"// The number of fringes that passes across the cross wire of telescope = 87 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.72: Distance_between_two_successive_positions_of_movable_mirror.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.72:: Page-2.58(2009)\n",
+"clc; clear;\n",
+"lambda1 = 5890e-008; // Wavelength corresponding to the D1 line, cm\n",
+"lambda2 = 5896e-008; // Wavelength corresponding to the D2 line, cm\n",
+"delta_lambda = lambda2 - lambda1; // Difference in the wavelengths, cm\n",
+"// As delta_lambda = lambda1*lambda2/(2*x), solving for x\n",
+"x = lambda1*lambda2/(2*(lambda2-lambda1)); // Distance between two successive positions of movable mirror\n",
+"printf('\nThe distance between two successive positions of movable mirror = %3.1e cm', x);\n",
+"// Result\n",
+"// The distance between two successive positions of movable mirror = 2.9e-002 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.73: Thickness_of_the_transparent_glass_film.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.73:: Page-2.58(2009)\n",
+"clc; clear;\n",
+"N = 550; // Number of fringes crossing the field of view\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"mu = 1.5; // Refractive index of the glass slab\n",
+"// As 2*(mu-1)*t = N*lambda, solving for t\n",
+"t = N*lambda/(2*(mu-1)); // Thickness of the transparent glass film\n",
+"printf('\nThe distance between two successive positions of movable mirror = %3.1e cm', t);\n",
+"// Result\n",
+"// The distance between two successive positions of movable mirror = 3.0e-002 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Fringe_width_of_the_interference_pattern_due_to_biprism.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.7:: Page-2.11 (2009)\n",
+"clc; clear;\n",
+"alpha = %pi/180; // Acute angle of biprism, radian\n",
+"mu = 1.5; // Refractive index of biprism\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"y1 = 5; // Distance of biprism from the source, cm\n",
+"y2 = 75; // Distance of biprism from the screen, cm\n",
+"D = y1 + y2; // Distance between slits and the screen, cm\n",
+"d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm\n",
+"b = lambda*D/d; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"printf('\nThe fringe width of the interfernce pattern due to biprism = %4.2e cm', b);\n",
+"// Result\n",
+"// The fringe width of the interfernce pattern due to biprism = 5.04e-02 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Angle_of_vertex_of_the_biprism.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.8:: Page-2.11 (2009)\n",
+"clc; clear;\n",
+"mu = 1.5; // Refractive index of biprism\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"y1 = 5; // Distance of biprism from the source, cm\n",
+"y2 = 95; // Distance of biprism from the screen, cm\n",
+"D = y1 + y2; // Distance between slits and the screen, cm\n",
+"b = 0.025; // Fringe width of the interfernce pattern due to biprism, cm\n",
+"// As d = 2*(mu-1)*alpha*y1, solving for alpha\n",
+"alpha = lambda*D/(b*2*(mu-1)*y1) // Angle of vertex of the biprism, radian\n",
+"printf('\nThe angle of vertex of the biprism = %3.1e rad', alpha);\n",
+"// Result\n",
+"// The angle of vertex of the biprism = 4.4e-02 rad "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Number_of_interference_fringes_for_changed_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.9:: Page-2.12 (2009)\n",
+"clc; clear;\n",
+"n1 = 69; // Number of interference fringes obtained with yellow wavelength\n",
+"lambda1 = 5893e-008; // Wavelength of yellow light used, cm\n",
+"lambda2 = 5461e-008; // Wavelength of green light used, cm\n",
+"// As n*lambda = l*d/D = constant, therefore\n",
+"n2 = n1*lambda1/lambda2; // Number of interference fringes for green wavelength\n",
+"printf('\nThe number of interference fringes for changed wavelength = %2d', ceil(n2));\n",
+"// Result\n",
+"// The number of interference fringes for changed wavelength = 75 "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_V_Yadav/3-Diffraction.ipynb b/Engineering_Physics_by_V_Yadav/3-Diffraction.ipynb
new file mode 100644
index 0000000..4eb1e2e
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/3-Diffraction.ipynb
@@ -0,0 +1,1494 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Diffraction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Slit_width_in_Fraunhoffer_single_slit_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.10:: Page-3.24 (2009)\n",
+"clc; clear;\n",
+"f = 250; // Focal length of the lens, cm\n",
+"x = 0.8; // Half width of central maxima, cm\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"// As x = f*lambda/a, solving for a\n",
+"a = f*lambda/x; // Slit width in Fraunhofer single slit experiment\n",
+"\n",
+"printf('\nThe slit width = %5.3f cm', a);\n",
+"\n",
+"// Result \n",
+"// The slit width = 0.017 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: Half_angular_width_of_central_maxima.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.11:: Page-3.25 (2009)\n",
+"clc; clear;\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"a = 8.5e-005; // Width of the slit, cm\n",
+"n = 1; // Order of diffraction\n",
+"// For a single slit Fraunhofer diffraction, a*sind(theta) = n*lambda, solving for theta\n",
+"theta = asind(n*lambda/a); // Half angular width at central maximum in Fraunhoffer diffraction, degrees\n",
+"\n",
+"printf('\nThe half angular width at central maximum in Fraunhoffer diffraction = %4.1f degrees', theta);\n",
+"\n",
+"// Result \n",
+"// The half angular width at central maximum in Fraunhoffer diffraction = 40.3 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: Wavelength_of_light_used_in_Fraunhoffer_diffraction_due_to_single_slit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.12:: Page-3.25 (2009)\n",
+"clc; clear;\n",
+"a = 0.04; // Slit width, cm\n",
+"x = 0.5; // Half width of central maximum, cm\n",
+"f = 300; // Focal length of the lens, cm\n",
+"// As x = lambda*f/a, solving for lambda\n",
+"lambda = a*x/f; // Wavelength of light used in Fraunhoffer diffraction due to single slit, cm\n",
+"\n",
+"printf('\nThe wavelength of light used in Fraunhoffer diffraction due to a single slit = %4d angstrom', lambda/1e-008);\n",
+"\n",
+"// Result \n",
+"// The wavelength of light used in Fraunhoffer diffraction due to a single slit = 6666 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: Width_of_central_maxima_from_position_of_first_secondary_minima.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.13:: Page-3.25 (2009)\n",
+"clc; clear;\n",
+"a = 0.045; // Slit width, cm\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"f = 250; // Focal length of the lens, cm\n",
+"x = lambda*f/a; // Position of central maxima, cm\n",
+"\n",
+"printf('\nThe position of central maxima = %5.3f cm', x);\n",
+"printf('\nThe width of central maxima from first minima = %5.3f cm', 2*x);\n",
+"\n",
+"// Result \n",
+"// The position of central maxima = 0.306 cm\n",
+"// The width of central maxima from first minima = 0.611 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: Wavelength_of_monochromatic_light_used_in_illuminating_a_slit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.14:: Page-3.26 (2009)\n",
+"clc; clear;\n",
+"a = 0.025; // Slit width, cm\n",
+"n = 2; // Order of diffraction\n",
+"f = 400; // Focal length of the lens, cm\n",
+"x = 2.1; // Position of central maxima, cm\n",
+"// As theta = n*lambda/a and theta = x/f, solving for lambda\n",
+"lambda = x*a/(n*f); // Wavelength of light used, cm\n",
+"printf('\nThe wavelength of light used = %4d angstrom', lambda/1e-008);\n",
+"\n",
+"// Result \n",
+"// The wavelength of light used = 6562 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: Distance_between_second_dark_and_next_bright_fringe_on_the_axes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.15:: Page-3.26 (2009)\n",
+"clc; clear;\n",
+"a = 0.25; // Slit width, cm\n",
+"lambda = 5890e-008; // Wavelength of light, cm\n",
+"f = 80; // Focal length of the lens, cm\n",
+"n = 2; // Order of diffraction\n",
+"// As for minima, theta = n*lambda/a and theta = x/f, solving for x\n",
+"x2 = 2*lambda*f/a; // Position of 2nd dark fringe, cm\n",
+"// As for maxima, theta = (2*n+1)*lambda/(2*a) and theta = x/f, solving for x\n",
+"x2_prime = 5*lambda*f/(2*a); // Position of 2nd bright fringe, cm\n",
+"delta_x = x2_prime-x2; // Distance between 2nd dark and next bright, cm\n",
+"printf('\nThe distance between 2nd dark and next bright fringe = %4.2e cm', delta_x);\n",
+"\n",
+"// Result \n",
+"// The distance between 2nd dark and next bright fringe = 9.42e-003 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: Width_of_the_slit_from_first_order_diffractio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.16:: Page-3.27 (2009)\n",
+"clc; clear;\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"x = 3.9e-001; // Half width of central maximum, cm\n",
+"f = 220; // Focal length of the lens, cm\n",
+"n = 1; // Order for first order diffraction\n",
+"// As a*sin(theta) = n*lambda, a*theta = n*lambda\n",
+"// As theta = lambda/a and theta = x/f, solving for a\n",
+"a = lambda*f/x; // Half angular width at central maximum, cm\n",
+"\n",
+"printf('\nThe width of the slit = %3.1e cm', a);\n",
+"\n",
+"// Result \n",
+"// The width of the slit = 3.1e-002 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18: Fraunhoffer_diffraction_due_to_double_slits.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.18:: Page-3.30 (2009)\n",
+"clc; clear;\n",
+"a = 0.019e-003; // Width of each slit, m\n",
+"b = 2.0e-004; // Width of opacity between two slits, m\n",
+"lambda = 5000e-010; // Wavelengh of light used, m\n",
+"D = 0.6; // Distance between slit and the screen, m\n",
+"// As angular separation, theta = x/D = lambda/(a+b), solving for x\n",
+"x = D*lambda/(a+b); // Fringe spacing on the screen, m\n",
+"// As half angular separation, theta1 = x1/D = lambda/(2*(a+b)), solving for x1\n",
+"x1 = D*lambda/(2*(a+b)); // Distance between central maxima and first minima, m\n",
+"\n",
+"printf('\nThe fringe spacing on the screen = %4.2f mm', x/1e-003);\n",
+"printf('\nThe distance between central maxima and first minima = %4.2f mm', x1/1e-003);\n",
+"\n",
+"// Result \n",
+"// The fringe spacing on the screen = 1.37 mm\n",
+"// The distance between central maxima and first minima = 0.68 mm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19: Fringe_separation_in_Fraunhoffer_double_slit_diffraction_pattern.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.19:: Page-3.31 (2009)\n",
+"clc; clear;\n",
+"f = 150; // Distance between screen and slit, cm\n",
+"a = 0.005; // Slit width, cm\n",
+"b = 0.06; // Distance between slits, cm\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"// As half angular separation, theta1 = x1/f = lambda/(2*(a+b)), solving for x1\n",
+"x1 = f*lambda/(2*(a+b)); // Distance between central maxima and first minima, cm\n",
+"delta_theta = lambda/(2*(a+b)); // Angular separation between two consecutive minima, radians\n",
+"printf('\nThe distance between central maxima and first minima = %4.2e cm', x1);\n",
+"printf('\nThe angular separation between two consecutive minima = %3.1e radians', delta_theta);\n",
+"\n",
+"// Result \n",
+"// The distance between central maxima and first minima = 6.35e-002 cm\n",
+"// The angular separation between two consecutive minima = 4.2e-004 radians "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Position_of_the_screen_so_that_light_is_focused_on_the_brightest_spot.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.1:: Page-3.9 (2009)\n",
+"clc; clear;\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"r1 = 0.2; // Radius of first ring of zone plate, cm\n",
+"n = 1; // Order of zone plate\n",
+"f1 = r1^2/(n*lambda); // Position of the screen so that light is focused on the brightest spot, cm\n",
+" \n",
+"printf('\nThe position of the screen so that light is focused on the brightest spot = %3.1e cm', lambda);\n",
+"\n",
+"// Result \n",
+"// The position of the screen so that light is focused on the brightest spot = 5.9e-005 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20: Positions_of_first_secondary_maxima_and_minima_in_double_slit_diffraction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.20:: Page-3.32 (2009)\n",
+"clc; clear;\n",
+"f = 120; // Distance between screen and slit, cm\n",
+"a = 0.019; // Slit width, cm\n",
+"b = 0.041; // Distance between slits, cm\n",
+"lambda = 6500e-008; // Wavelength of light used, cm\n",
+"// As theta1 = x1/f = lambda/(2*(a+b)), solving for x1\n",
+"x1 = f*lambda/(2*(a+b)); // Position of first secondary minima, cm\n",
+"// As theta2 = x2/f = lambda/(a+b), solving for x2\n",
+"x2 = f*lambda/(a+b); // Position of first secondary maxima, cm\n",
+"\n",
+"printf('\nThe position of first secondary minima = %5.3f cm', x1);\n",
+"printf('\nThe position of first secondary maxima = %4.2f cm', x2);\n",
+"\n",
+"// Result \n",
+"// The position of first secondary minima = 0.065 cm\n",
+"// The position of first secondary maxima = 0.13 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.21: Missing_orders_of_spectra_in_Fraunhoffer_double_slit_diffraction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.21:: Page-3.34 (2009)\n",
+"clc; clear;\n",
+"a = 0.2; // Slit width, mm\n",
+"b = 0.8; // Distance between slits, mm\n",
+"p = [1 2 3 4]; // Orders of pth diffraction maxima\n",
+"// As diffraction of pth diffraction maxima, a*sin(theta)=p*lambda --- (i)\n",
+"// and that of nth diffraction maxima, (a+b)*sin(theta)=n*lambda --- (ii)\n",
+"// Dividing (ii) by (i), we have\n",
+"// (a+b)/a = n/p, solving for n\n",
+"n = (a+b)/a*p; // Orders of nth diffraction maxima\n",
+"\n",
+"printf('\nThe missing orders of spectra in diffraction maxima, n = %d, %d, %d, %d,...', n(1), n(2), n(3), n(4));\n",
+"\n",
+"\n",
+"// Result \n",
+"// The missing orders of spectra in diffraction maxima, n = 5, 10, 15, 20,... "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.22: Angles_of_diffraction_for_the_principal_maxima_for_two_lines_of_sodium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.22:: Page-3.45 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 5890e-008; // Wavelength of D1 line of Na, cm\n",
+"lambda2 = 5896e-008; // Wavelength of D2 line of Na, cm\n",
+"N = 3000/0.5; // No. of lines per cm of grating, lines/cm\n",
+"a_plus_b = 1/N; // Grating element, cm\n",
+"n = 1; // Order of diffraction for principal maxima\n",
+"// As (a+b)*sin(theta1) = n*lambda, solving for theta1\n",
+"theta1 = asind(n*lambda1/(a_plus_b)); // Angle of diffraction for the principal maxima of D1 line, degrees\n",
+"theta2 = asind(n*lambda2/(a_plus_b)); // Angle of diffraction for the principal maxima of D2 line, degrees\n",
+"printf('\nThe angle of diffraction for the principal maxima of D1 line = %5.2f degrees', theta1);\n",
+"printf('\nThe angle of diffraction for the principal maxima of D2 line = %5.2f degrees', theta2);\n",
+"\n",
+"// Result \n",
+"// The angle of diffraction for the principal maxima of D1 line = 20.70 degrees\n",
+"// The angle of diffraction for the principal maxima of D2 line = 20.72 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.23: Highest_order_spectrum_which_can_be_seen_in_monochromatic_light.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.23:: Page-3.45 (2009)\n",
+"clc; clear;\n",
+"lambda = 5500e-008; // Wavelength of light used, cm\n",
+"N = 15000; // No. of lines per inch of grating, lines/inch\n",
+"a_plus_b = 2.54/N; // Grating element, cm\n",
+"n = 1; // Order of diffraction for principal maxima\n",
+"// As (a+b)*sin(theta_n) = n*lambda and for maximum possible order of spectra sin(theta_n) = 1\n",
+"// So (a+b) = n*lambda, solving for n\n",
+"n = (a_plus_b)/lambda; // The highest order spectrum which can be seen in monochromatic light\n",
+"\n",
+"printf('\nThe highest order spectrum which can be seen in monochromatic light = %d', n);\n",
+"\n",
+"// Result \n",
+"// The highest order spectrum which can be seen in monochromatic light = 3 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.24: Angle_of_separation_in_second_order_of_diffraction_spectrum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.24: : Page-3.46 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 5890e-008; // Wavelength of D1 line, cm\n",
+"lambda2 = 5896e-008; // Wavelength of D2 line, cm\n",
+"N = 15000; // No. of lines per inch of grating, lines/inch\n",
+"a_plus_b = 2.54/N; // Grating element, cm\n",
+"n = 2; // Order of diffraction for secondary maxima\n",
+"// As (a+b)*sin(theta_n) = n*lambda, solving for theta1 and theta2\n",
+"theta1 = asind(n*lambda1/a_plus_b); // Direction of secondary maxima with lambda1, degrees\n",
+"theta2 = asind(n*lambda2/a_plus_b); // Direction of secondary maxima with lambda2, degrees\n",
+"\n",
+"printf('\nThe angle of separation in second order diffraction spectrum = %3.1f degrees', theta2-theta1);\n",
+"\n",
+"// Result \n",
+"// The angle of separation in second order diffraction spectrum = 0.1 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.25: Separation_of_two_lines_in_first_order_spectrum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.25:: Page-3.46 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 5500e-008; // First wavelength, cm\n",
+"lambda2 = 3700e-008; // Second wavelength, cm\n",
+"N = 15000; // No. of lines per inch of grating, lines/inch\n",
+"a_plus_b = 2.54/N; // Grating element, cm\n",
+"f = 120; // Focal length of the lens, cm\n",
+"n = 1; // Order of diffraction for principal maxima\n",
+"// As (a+b)*sin(theta_n) = n*lambda, solving for theta1 and theta2\n",
+"theta1 = asind(n*lambda1/a_plus_b); // Direction of principal maxima with lambda1, degrees\n",
+"theta2 = asind(n*lambda2/a_plus_b); // Direction of principal maxima with lambda2, degrees\n",
+"// As tand(theta) = x/f, solving for x1 - x2 = dx\n",
+"dx = f*(tand(theta1)-tand(theta2)); // Linear separation of two lines in first order spectrum, cm\n",
+"\n",
+"printf('\nThe linear separation of two lines in first order spectrum = %5.2f cm', dx);\n",
+"\n",
+"// Result \n",
+"// The linear separation of two lines in first order spectrum = 14.34 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.26: Difference_in_the_deviation_in_the_first_and_third_order_spectra.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.26:: Page-3.47 (2009)\n",
+"clc; clear;\n",
+"lambda = 5000e-008; // Wavelength of light used, cm\n",
+"N = 5000; // No. of lines per cm of grating, lines/cm\n",
+"a_plus_b = 1/N; // Grating element, cm\n",
+"n = 1; // Order of diffraction for first order spectra\n",
+"// As (a+b)*sin(theta_n) = n*lambda, solving for theta for first and third orders\n",
+"theta1 = asind(n*lambda/a_plus_b); // Direction of principal maxima with lambda1, degrees\n",
+"n = 3; // Order of diffraction for third order spectra\n",
+"theta3 = asind(n*lambda/a_plus_b); // Direction of principal maxima with lambda2, degrees\n",
+"delta_theta = theta3 - theta1; // Angular separation in the first and third order spectra, \n",
+"\n",
+"printf('\nThe difference in the deviation in the first and third order spectra = %4.1f degrees', delta_theta);\n",
+"\n",
+"// Result \n",
+"// The difference in the deviation in the first and third order spectra = 34.1 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.27: Order_of_diffraction_for_the_given_grating_element_and_wavelength_of_light.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.27:: Page-3.48 (2009)\n",
+"clc; clear;\n",
+"lambda = 6500e-008; // Wavelength of light used, cm\n",
+"N = 10000; // No. of lines per cm of grating, lines/cm\n",
+"a_plus_b = 1/N; // Grating element, cm\n",
+"theta_n = 90; // Direction for maximum possible orders, degrees\n",
+"// As (a+b)*sin(theta_n) = n*lambda, solving for theta for n\n",
+"n = a_plus_b*sind(theta_n)/lambda; // Order of diffraction for \n",
+"\n",
+"printf('\nThe order of diffraction for the given grating element and wavelength of light = %d', n);\n",
+"\n",
+"// Result \n",
+"// The order of diffraction for the given grating element and wavelength of light = 1 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.28: Number_of_lines_ruled_on_the_grating_surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.28:: Page-3.48 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 6500e-008; // Wavelength of first line, cm\n",
+"lambda2 = 4500e-008; // Wavelength of scecond line, cm\n",
+"theta1 = 18; // Direction of lower order, degrees\n",
+"theta2 = 18; // Direction of higher order, degrees\n",
+"// As (a+b)*sin(theta1) = n*lambda1 and (a+b)*sin(theta2) = (n+1)*lambda2, solving for n\n",
+"n = lambda2/(lambda1 - lambda2); // Order of diffraction for first wavelength\n",
+"// As a_plus_b = n*lambda1/sind(theta1), solving for a_plus_b\n",
+"a_plus_b = ceil(n)*lambda1/sind(theta1); // Grating element, cm\n",
+"N = 1/a_plus_b; // No. of lines on the grating surface, lines/cm\n",
+"\n",
+"printf('\nThe number of lines ruled on the grating surface = %4d lines/cm', N);\n",
+"\n",
+"// Result \n",
+"// The number of lines ruled on the grating surface = 1584 lines/cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.29: Angles_at_which_first_and_second_order_maxima_are_observed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.29:: Page-3.48 (2009)\n",
+"clc; clear;\n",
+"lambda = 6328e-008; // Wavelength of He-Laser, cm\n",
+"a_plus_b = 1/6000; // Grating element, cm\n",
+"n = 1; // First order of diffraction for given wavelength\n",
+"// As (a+b)*sin(theta1) = n*lambda, solving for theta1\n",
+"theta1 = asind(n*lambda/a_plus_b); // Angle at which first order maximum is observed, degrees\n",
+"n = 2; // second order of diffraction for given wavelength\n",
+"theta2 = asind(n*lambda/a_plus_b); // Angle at which second order maximum is observed, degrees\n",
+"\n",
+"printf('\nThe angle at which first order maximum is observed = %4.1f degrees', theta1);\n",
+"printf('\nThe angle at which second order maximum is observed = %4.1f degrees', theta2);\n",
+"\n",
+"// Result \n",
+"// The angle at which first order maximum is observed = 22.3 degrees\n",
+"// The angle at which second order maximum is observed = 49.4 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Zone_plate_with_a_point_source_of_light_on_the_axis.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.2:: Page-3.9 (2009)\n",
+"clc; clear;\n",
+"v1 = 36; // Position of the strongest image from the zone plate, cm\n",
+"v2 = 9; // Position of the next image from the zone plate, cm\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"r1 = 1; // For simplicity assume radius of first ring of zone plate to be unity, cm\n",
+"n = 1; // Order of zone plate\n",
+"// As 1/v1-1/u = n*lambda/r1^2 = 1/3*(1/v2-1/u), solving for u\n",
+"u = 2/(3/36-1/9); // Distance of the zone plate from source, cm\n",
+"// As 1/v-1/u = n*lambda/r1^2, solving for r1\n",
+"r1 = sqrt(lambda/(1/v1-1/abs(u))); // Radius of first zone, cm\n",
+"f1 = r1^2/(n*lambda); // Principal focal length, cm\n",
+"\n",
+"printf('\nThe distance of the zone plate from source = %2d cm', u);\n",
+"printf('\nThe radius of first zone = %3.1e cm', r1);\n",
+"printf('\nThe principal focal length = %4.1f cm', f1);\n",
+"\n",
+"// Result \n",
+"// The distance of the zone plate from source = -72 cm\n",
+"// The radius of first zone = 6.5e-002 cm\n",
+"// The principal focal length = 72.0 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.30: Least_width_of_plane_transmission_grating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.30:: Page-3.49 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 5890e-008; // Wavelength of D1 line of Na, cm\n",
+"lambda2 = 5896e-008; // Wavelength of D2 line of Na, cm\n",
+"d_lambda = lambda2-lambda1; // Linear separation of two lines just seen as separate, cm\n",
+"P = 500; // Number of lines per cm on grating, lines/cm\n",
+"n = 2; // Order of diffraction\n",
+"// As resolving power of grating, lambda/d_lambda = n*N, solving for N\n",
+"N = lambda1/(d_lambda*n); // No. of lines required per cm on grating, lines/cm\n",
+"w = N/P; // Least width of grating, cm\n",
+"\n",
+"printf('\nThe least width of plane transmission grating = %5.3f cm', w);\n",
+"\n",
+"// Result \n",
+"// The least width of plane transmission grating = 0.982 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.31: Minimum_grating_width_required_to_resolve_two_wavelengths.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.31:: Page-3.49 (2009)\n",
+"clc; clear;\n",
+"theta1 = 18; // Direction at which first spectral line appears, degrees\n",
+"theta2 = 18+5/(60*60); // Direction at which second spectral line appears, degrees\n",
+"d_theta = (theta2-theta1)*%pi/180; // Angular separation of two spectral lines, radians\n",
+"d_lambda = 50e-010; // Linear separation of two spectral lines just seen as separate, cm\n",
+"DP = d_theta/d_lambda; // Dispersive power of grating\n",
+"n = 1; // Order of diffraction\n",
+"// As dispersive power of grating d_theta/d_lambda = DP = n/((a_plus_b)*cosd(theta1)), solving for a_plus_b\n",
+"a_plus_b = n/(DP*cosd(theta1)); // Grating element, cm\n",
+"// But a_plus_b*sind(theta1)=n*lambda1, solving for lambda1\n",
+"lambda1 = a_plus_b*sind(theta1)/n; // Wavelength of first spectral line, cm\n",
+"lambda2 = lambda1+d_lambda/1e-002; // Wavelength of second spectral line, cm\n",
+"// As resolving power of grating, lambda/d_lambda = n*N, solving for N\n",
+"N = lambda1/(d_lambda*n); // No. of lines required per cm on grating\n",
+"w = N*a_plus_b; // Minimum grating width required to resolve two wavelengths, cm\n",
+"\n",
+"printf('\nThe wavelength of first spectral line = %4.0f angstrom', lambda1/1e-008);\n",
+"printf('\nThe wavelength of second spectral line = %4.0f angstrom', lambda2/1e-008);\n",
+"printf('\nThe minimum grating width required to resolve two wavelengths = %3.1f cm', w);\n",
+"\n",
+"// Result \n",
+"// The wavelength of first spectral line = 6702 angstrom\n",
+"// The wavelength of second spectral line = 6752 angstrom\n",
+"// The minimum grating width required to resolve two wavelengths = 2.9 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.32: Angle_of_diffraction_for_maxima_in_first_order.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.32:: Page-3.50 (2009)\n",
+"clc; clear;\n",
+"// Function to convert theta into degree-minute\n",
+"function[degre, minute]=deg_2_degminsec(theta)\n",
+" degre = floor(theta);\n",
+" minute = (theta-floor(theta))*60;\n",
+"endfunction\n",
+"\n",
+"N = 15000; // No. of lines on the grating per inch, lines/inch\n",
+"a_plus_b = 2.54/N; // Grating element, cm\n",
+"lambda = 6000e-008; // Wavelength of light used, cm\n",
+"n = 1; // Order of diffraction spectra\n",
+"// But a_plus_b*sind(theta)=n*lambda, solving for theta\n",
+"theta = asind(n*lambda/a_plus_b); // Direction in which first order spectra is seen, degrees\n",
+"[deg, mint] = deg_2_degminsec(theta);\n",
+"printf('\nThe angle of diffraction for maxima in first order = %2d degrees %2d min', deg, mint);\n",
+"\n",
+"// Result \n",
+"// The angle of diffraction for maxima in first order = 20 degrees 45 min "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.33: Wavelength_of_light_used_in_obtaining_second_order_diffraction_maximum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.33:: Page-3.50 (2009)\n",
+"clc; clear;\n",
+"N = 12000; // No. of lines on the grating per inch, lines/inch\n",
+"a_plus_b = 2.54/N; // Grating element, cm\n",
+"n = 2; // Order of diffraction spectra\n",
+"theta = 39; // Angle of diffraction for maxima in second order, degrees\n",
+"// But a_plus_b*sind(theta)=n*lambda, solving for lambda\n",
+"lambda = a_plus_b*sind(theta)/n; // Wavelength of light used, cm\n",
+"\n",
+"printf('\nThe wavelength of light used in obtaining second order diffraction maximum = %4d angstrom', lambda/1e-008);\n",
+"\n",
+"// Result \n",
+"// The wavelength of light used in obtaining second order diffraction maximum = 6660 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.34: Number_of_visible_orders_using_diffraction_grating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.34:: Page-3.51 (2009)\n",
+"clc; clear;\n",
+"lambda = 5890e-008; // Wavelength of light used, cm\n",
+"N = 6000; // No. of lines on the grating per inch, lines/inch\n",
+"a_plus_b = 2.54/N; // Grating element, cm\n",
+"theta_max = 90; // Direction of maxima for maximum possible orders\n",
+"// But a_plus_b*sind(theta_max)=n*lambda, solving for n\n",
+"n = a_plus_b*sind(theta_max)/lambda; // Number of visible orders\n",
+"\n",
+"printf('\nThe number of visible orders using diffraction grating = %d', n);\n",
+"\n",
+"// Result \n",
+"// The number of visible orders using diffraction grating = 7 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.35: Distance_between_two_wavelengths_seen_as_separate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.35:: Page-3.51 (2009)\n",
+"clc; clear;\n",
+"lambda = 5500e-008; // Mean of two wavelengths, cm\n",
+"theta = 35; // Angle of diffraction for maxima in second order\n",
+"d_theta = 0.15; // Angular separation between two neighbouring wavelengths, radians\n",
+"d_lambda = lambda*cotd(theta)*d_theta; // Distance between two wavelengths seen as separate, cm\n",
+"\n",
+"printf('\nThe distance between two wavelengths seen as separate = %d angstrom', d_lambda/1e-008);\n",
+"\n",
+"// Result \n",
+"// The distance between two wavelengths seen as separate = 1178 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.36: Number_of_lines_per_cm_on_grating_surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.36:: Page-3.51 (2009)\n",
+"clc; clear;\n",
+"lambda1 = 5500e-008; // First wavelength of light, cm\n",
+"lambda2 = 4500e-008; // Second wavelength of light, cm\n",
+"theta = 45; // Angle of diffraction for lower order, degrees\n",
+"n = lambda2/(lambda1-lambda2); // Lower order of diffraction\n",
+"// But a_plus_b*sind(theta)=n*lambda, solving for a_plus_b\n",
+"a_plus_b = floor(n)*lambda1/sind(theta); // Grating element, cm\n",
+"N = 1/a_plus_b; // No. of lines per cm on grating surface, lines/cm\n",
+"\n",
+"printf('\nThe number of lines per cm on grating surface = %4d lines/cm', ceil(N));\n",
+"\n",
+"// Result \n",
+"// The number of lines per cm on grating surface = 3215 lines/cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.37: Total_number_of_lines_on_grating_surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.37:: Page-3.52 (2009)\n",
+"clc; clear;\n",
+"lambda = 6500e-008; // Wavelength of light used, cm\n",
+"theta = 19.5; // Angle of diffraction for maxima in first order, degrees\n",
+"l = 3.5; // Length of the grating, cm\n",
+"n = 1; // Order of diffraction\n",
+"// But a_plus_b*sind(theta)=n*lambda, solving for a_plus_b\n",
+"a_plus_b = n*lambda/sind(theta); // Grating element, cm\n",
+"N = 1/a_plus_b; // No. of lines per cm on grating surface, lines/cm\n",
+"N_total = l*N; // Total number of lines on grating surface\n",
+"\n",
+"printf('\nThe total number of lines on grating surface = %5d', N_total);\n",
+"\n",
+"// Result \n",
+"// The total number of lines on grating surface = 17974 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.38: Angular_separation_between_the_sodium_D1_and_D2_lines.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.38:: Page-3.52 (2009)\n",
+"clc;clear;\n",
+"function [mint, secnd]=degmin(theta)\n",
+" mint = (theta-floor(theta))*60;\n",
+" secnd = (mint-floor(mint))*60\n",
+"endfunction\n",
+"lambda_D1 = 5890e-008; // Wavelength of sodium D1 line, cm\n",
+"lambda_D2 = 5896e-008; // Wavelength of sodium D2 line, cm\n",
+"n = 2; // Order of diffraction\n",
+"N = 6500; // Number of lines per cm on grating, lines/cm\n",
+"a_plus_b = 1/6500; // Grating element, cm\n",
+"// As a_plus_b*sin(theta1)=n*lambda1, solving for theta1\n",
+"theta1 = asind(n*lambda_D1/a_plus_b);\n",
+"// As a_plus_b*sin(theta2)=n*lambda2, solving for theta1\n",
+"theta2 = asind(n*lambda_D2/a_plus_b);\n",
+"d_theta = theta2-theta1; // Angular separation between the sodium D1 and D2 lines, degrees\n",
+"[mint, secnd] = degmin(d_theta); // Call deg_2_degmin function\n",
+"printf('\nThe angular separation between the sodium D1 and D2 lines = %d minutes %d seconds', mint, secnd);\n",
+"// Result\n",
+"// The angular separation between the sodium D1 and D2 lines = 4 minutes 10 seconds \n",
+"// Since theta1 and theta2 are rounded off in the textbook, therefore the answer is mismatching."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.39: Minimum_number_of_lines_in_a_grating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.39:: Page-3.55 (2009)\n",
+"clc;clear;\n",
+"lambda1 = 5890e-008; // Wavelength of sodium D1 line, cm\n",
+"lambda2 = 5896e-008; // Wavelength of sodium D2 line, cm\n",
+"d_lambda = lambda2-lambda1; // Difference in the wavelength of two lines, cm\n",
+"n = 2; // Order of diffraction\n",
+"// As lambda/d_lambda = n*N, solving for N\n",
+"N = lambda1/(d_lambda*n); // Minimum number of lines in a grating\n",
+"printf('\nThe minimum number of lines in a grating = %3d lines', N);\n",
+"// Result\n",
+"// The minimum number of lines in a grating = 490 lines "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Position_of_the_first_image_in_a_zone_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.3:: Page-3.10 (2009)\n",
+"clc; clear;\n",
+"lambda = 5500e-010; // Wavelength of light used, cm\n",
+"u = -4; // Distance of the zone plate from source, cm\n",
+"D = 3.7e-003; // Diameter of central zone of zone plate, cm\n",
+"r = D/2; // Radius of central zone of zone plate, cm\n",
+"n = 1; // Order of zone plate\n",
+"f1 = r^2/(n*lambda); // Principal focal length, cm\n",
+"v1 = 36; // Position of the strongest image from the zone plate, cm\n",
+"v2 = 9; // Position of the next image from the zone plate, cm\n",
+"// As 1/v - 1/u = 1/f, solving for v\n",
+"v = 1/(1/f1+1/u); // Position of the first image in a zone plate, cm\n",
+"\n",
+"printf('\nThe position of the first image in a zone plate = %2d cm', floor(v));\n",
+"\n",
+"// Result \n",
+"// The position of the first image in a zone plate = -12 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.40: Linear_separation_of_two_points_on_the_moon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.40:: Page-3.56 (2009)\n",
+"clc;clear;\n",
+"lambda = 5500e-008; // Wavelength of most sensitive color to an eye, cm\n",
+"a = 400; // Aperture of the telescope, cm\n",
+"D = 3.8e+010; // Distance of the moon from the earth, cm\n",
+"d_theta = 1.22*lambda/a; // Limit of resolution of telescope, radians\n",
+"// As d_theta = x/D, solving for x\n",
+"x = d_theta*D; // Linear separation of two points on the moon, cm\n",
+"printf('\nThe linear separation of two points on the moon = %5.2f m', x/1e+002);\n",
+"// Result\n",
+"// The linear separation of two points on the moon = 63.74 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.41: Minimum_required_number_of_lines_on_the_plane_transmission_grating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.41:: Page-3.56 (2009)\n",
+"clc;clear;\n",
+"lambda1 = 5890e-008; // Wavelength of sodium D1 line, cm\n",
+"lambda2 = 5896e-008; // Wavelength of sodium D2 line, cm\n",
+"d_lambda = lambda2-lambda1; // Wavelength difference, cm\n",
+"n = 2; // Order of diffraction\n",
+"// As lambda/d_lambda = n*N, solving for N\n",
+"N = 1/n*(lambda1+lambda2)/(2*d_lambda); // Minimum required number of lines on the plane transmission grating\n",
+"printf('\nThe minimum required number of lines on the plane transmission grating = %3d', N);\n",
+"// Result\n",
+"// The minimum required number of lines on the plane transmission grating = 491 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.42: EX3_42.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.42:: Page-3.57 (2009)\n",
+"clc;clear;\n",
+"lambda1 = 5890e-008; // Wavelength of sodium D1 line, cm\n",
+"lambda2 = 5896e-008; // Wavelength of sodium D2 line, cm\n",
+"d_lambda = lambda2-lambda1; // Wavelength difference, cm\n",
+"w = 2.5; // Width of the grating, cm\n",
+"n = 2; // Order of diffraction\n",
+"// As lambda/d_lambda = n*N, solving for N\n",
+"N = 1/n*(lambda1+lambda2)/(2*d_lambda); // Minimum required number of lines on the plane transmission grating\n",
+"printf('\nThe number of lines on the plane transmission grating to just resolve the sodium lines = %3d', N/w);\n",
+"// Result\n",
+"// The number of lines on the plane transmission grating to just resolve the sodium lines = 196 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.43: Minimum_width_of_the_grating_to_resolve_the_sodium_lines_in_third_order.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.43:: Page-3.57 (2009)\n",
+"clc;clear;\n",
+"lambda1 = 5890e-008; // Wavelength of sodium D1 line, cm\n",
+"lambda2 = 5896e-008; // Wavelength of sodium D2 line, cm\n",
+"d_lambda = lambda2-lambda1; // Wavelength difference, cm\n",
+"n = 3; // Order of diffraction\n",
+"P = 2500; // Number of lines per unit length of grating\n",
+"// As lambda/d_lambda = n*N, solving for N\n",
+"N = 1/n*(lambda1+lambda2)/(2*d_lambda); // Total lines on the grating \n",
+"w = N/P; // Minimum width of the grating, cm\n",
+"printf('\nThe minimum width of the grating to resolve the sodium lines in third order = %5.3f cm', w);\n",
+"// Result\n",
+"// The minimum width of the grating to resolve the sodium lines in third order = 0.131 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.44: Dispersive_power_and_diffraction_angle_for_grating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.44:: Page-3.57 (2009)\n",
+"clc;clear;\n",
+"w = 2; // Width of the grating, cm\n",
+"P = 4500; // Total number of lines on the grating\n",
+"a_plus_b = w/P; // Grating element, cm\n",
+"lambda1 = 5890e-008; // Wavelength of sodium D1 line, cm\n",
+"lambda2 = 5896e-008; // Wavelength of sodium D2 line, cm\n",
+"lambda = (lambda1+lambda2)/2; // Mean wavelength of light used, cm\n",
+"d_lambda=lambda2-lambda1; // Difference in wavelengths of D-lines of sodium, cm\n",
+"n = 2; // Order of diffraction\n",
+"// As a_plus_b*sind(theta)=n*lambda, solving for theta\n",
+"theta = asind(n*lambda/a_plus_b); // Angle of diffraction, degrees\n",
+"DP = n/(a_plus_b*cosd(theta)); // Dispersive power of grating\n",
+"d_theta = DP*d_lambda*180/%pi; // Angular separation between D-lines, degrees\n",
+"RP = lambda/d_lambda; // Required resolving power of grating for sodium lines\n",
+"N = 2.54/a_plus_b; // No. of lines per cm on grating, lines/cm\n",
+"RP_cal = n*N; // Calculated resolving power of grating \n",
+"printf('\nThe angle of diffraction for maxima in second order = %6.4f degrees', d_theta);\n",
+"printf('\nAs %5.3e > %3d, D-lines can be resolved.', RP_cal, RP);\n",
+"// Result\n",
+"// The angle of diffraction for maxima in second order = 0.0160 degrees\n",
+"// As 1.143e+04 > 982, D-lines can be resolved. "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.45: Distance_between_centres_of_images_of_the_two_stars.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.45:: Page-3.58 (2009)\n",
+"clc;clear;\n",
+"lambda = 5500e-010; // Wavelength of light used, m\n",
+"a = 0.01; // Diameter of objective of telescope, m\n",
+"f = 3.0; // Focal length of tlescope objective, m \n",
+"// For telescope, the limit of resolution, \n",
+"// theta = x/f = 1.22*lambda/a, solving for x\n",
+"x = 1.22*lambda/a*f; // Distance between centres of imgaes of the two stars\n",
+"printf('\nThe distance between centres of imgaes of the two stars = %4.2e m', x);\n",
+"// Result\n",
+"// The distance between centres of imgaes of the two stars = 2.01e-04 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.46: Aperture_of_the_objective_of_the_microscope.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code EX3.46:: Page-3.59 (2009)\n",
+"clc;clear;\n",
+"lambda = 5461e-008; // Wavelength of light used, cm\n",
+"d = 4e-005; // Separation distance between two self-luminous objects, cm\n",
+"NA = 1.22*lambda/(2*d); // Numerical aperture of microscope, cm\n",
+"printf('\nThe numerical aperture of the objective of the microscopes = %6.4f cm', NA);\n",
+"// Result\n",
+"// The numerical aperture of the objective of the microscopes = 0.8328 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Principal_focal_length_of_zone_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.4:: Page-3.11 (2009)\n",
+"clc; clear;\n",
+"lambda = 1; // For simplicity assume wavelength of light used to be unity, unit\n",
+"R = 150; // Radius of curvature of the curved surface, cm\n",
+"r1 = sqrt(lambda*R); // For Newton's ring, cm\n",
+"f1 = r1^2/lambda; // Principal focal length of zone plate, cm\n",
+"\n",
+"printf('\nThe principal focal length of zone plate = %3d cm', f1);\n",
+"\n",
+"// Result \n",
+"// The principal focal length of zone plate = 150 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Half_angular_width_at_central_maximum_in_Fraunhoffer_diffraction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.5:: Page-3.22 (2009)\n",
+"clc; clear;\n",
+"lambda = 5000e-008; // Wavelength of light used, cm\n",
+"a = 15e-005; // Width of the slit, cm\n",
+"n = 1; // Order of diffraction\n",
+"// For a single slit Fraunhofer diffraction, a*sin(theta) = n*lambda, solving for theta\n",
+"theta = asin(n*lambda/a); // Half angular width at central maximum in Fraunhoffer diffraction, radian\n",
+"\n",
+"printf('\nThe half angular width at central maximum in Fraunhoffer diffraction = %5.3f rad', theta);\n",
+"\n",
+"// Result \n",
+"// The half angular width at central maximum in Fraunhoffer diffraction= 0.340 rad "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Width_of_the_slit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.6:: Page-3.23 (2009)\n",
+"clc; clear;\n",
+"lambda = 5000e-010; // Wavelength of light used, cm\n",
+"n = 1; // Order of diffraction\n",
+"x = 5e-003; // Position of first minima on either sides of central maximum, m\n",
+"D = 2.5; // Distance of screen from the narrow slir, m\n",
+"sin_theta = x/sqrt(x^2+D^2); // Sine of angle theta, rad\n",
+"// For a single slit Fraunhofer diffraction, a*sin(theta) = n*lambda, solving for a\n",
+"a = n*lambda/sin_theta; // Width of the slit, m\n",
+"\n",
+"printf('\nThe Width of the slit = %3.1e m', a);\n",
+"\n",
+"// Result \n",
+"// The Width of the slit = 2.5e-004 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Angular_width_of_central_maximum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.7:: Page-3.23 (2009)\n",
+"clc; clear;\n",
+"lambda = 6000e-010; // Wavelength of light used, m\n",
+"a = 15e-007; // Width of the slit, m\n",
+"// For a single slit Fraunhofer diffraction, a*sind(theta) = n*lambda, solving for theta\n",
+"theta = asind(lambda/a); // Half angular width of central maximum, degrees\n",
+"\n",
+"printf('\nThe angular width of central maximum = %2d degrees', 2*ceil(theta));\n",
+"\n",
+"// Result \n",
+"// The angular width of central maximum = 48 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Distance_between_first_minima_and_the_next_minima_from_the_axis.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.8:: Page-3.23 (2009)\n",
+"clc; clear;\n",
+"lambda = 5000e-010; // Wavelength of light used, m\n",
+"a = 0.7e-002; // Width of the slit, m\n",
+"f = 0.5; // Focal length of the lens, m\n",
+"n = 1; // Order of diffraction\n",
+"// For minima, a*sind(theta_n) = n*lambda\n",
+"// Also theta_n = n*lambda/a = x1/f, solving for x1\n",
+"x1 = f*n*lambda/a; // Position of first minima, cm\n",
+"// For secondary maxima, a*sind(theta_n) = (2*n+1)*lambda/2\n",
+"// Also theta_n = 3*lambda/(2*a) = x2/f, solving for x2\n",
+"n = 1; // Order of diffraction for first secondary minima\n",
+"x2 = 3*f*lambda/(2*a); // Position of first secondary maxima, cm\n",
+"\n",
+"printf('\nThe distance between first minima and the next minima from the axis = %4.2e cm', x2-x1);\n",
+"\n",
+"// Result \n",
+"// The distance between first minima and the next minima from the axis = 1.79e-005 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: Width_of_central_maxima_in_diffraction_pattern.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.9:: Page-3.24 (2009)\n",
+"clc; clear;\n",
+"lambda = 6600e-008; // Wavelength of light used, cm\n",
+"a = 0.018; // Width of the slit, cm\n",
+"f = 200; // Focal length of the lens, cm\n",
+"n = 1; // Order for first order diffraction\n",
+"// As a*sin(theta) = n*lambda, a*theta = n*lambda\n",
+"// As theta = lambda/a and theta = x/f, solving for x\n",
+"x = lambda*f/a; // Half angular width at central maximum, cm\n",
+"\n",
+"printf('\nThe width of central maximum = %3.1f cm', 2*x);\n",
+"\n",
+"// Result \n",
+"// The width of central maximum = 1.5 cm "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_V_Yadav/4-Polarization.ipynb b/Engineering_Physics_by_V_Yadav/4-Polarization.ipynb
new file mode 100644
index 0000000..69cf5ed
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/4-Polarization.ipynb
@@ -0,0 +1,850 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Polarization"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Thickness_of_quarter_wave_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.10:: Page-4.23 (2009)\n",
+"clc; clear;\n",
+"mu_o = 1.658; // Refractive index of ordinary wave\n",
+"mu_e = 1.486; // Refractive index of extraordinary wave\n",
+"lambda = 5893e-008; // Wavelength of light used, m\n",
+"// As (mu_o - mu_e)*t = lambda/4, solving for t\n",
+"t = lambda/(4*(mu_o - mu_e)); // Thickness of quarter-wave plate, cm\n",
+"\n",
+"printf('\nThe thickness of quarter-wave plate = %3.1e cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of quarter-wave plate = 8.6e-005 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: Least_thickness_of_plate_for_which_emergent_beam_is_plane_polarised.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.11:: Page-4.23 (2009)\n",
+"clc; clear;\n",
+"mu_o = 1.5442; // Refractive index of ordinary wave\n",
+"mu_e = 1.5533; // Refractive index of extraordinary wave\n",
+"lambda = 5000e-008; // Wavelength of light used, m\n",
+"// As (mu_o - mu_e)*t = lambda/4, solving for t\n",
+"t = lambda/(4*(mu_e - mu_o)); // Least thickness of plate for which emergent beam is plane polarised, cm\n",
+"\n",
+"printf('\nThe least thickness of plate for which emergent beam is plane polarised = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The least thickness of plate for which emergent beam is plane polarised = 1.37e-003 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: Difference_in_refractive_indices_of_rays.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.12:: Page-4.23 (2009)\n",
+"clc; clear;\n",
+"lambda = 5893e-008; // Wavelength of light used, m\n",
+"t = 0.005; // Thickness of the crystal, cm\n",
+"// As for quarter wave plate, mu_diff*t = (mu_o - mu_e)*t = lambda/4, solving for mu_diff\n",
+"mu_diff = lambda/(4*t); // The difference in refractive indices of rays, cm\n",
+"printf('\nThe least thickness of plate for which emergent beam is plane polarised = %4.2e cm', mu_diff);\n",
+"\n",
+"// Result \n",
+"// The least thickness of plate for which emergent beam is plane polarised = 2.95e-003 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: The_thickness_of_a_half_wave_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.13:: Page-4.24 (2009)\n",
+"clc; clear;\n",
+"mu_o = 1.54; // Refractive index of ordinary wave\n",
+"mu_e = 1.45; // Refractive index of extraordinary wave\n",
+"lambda = 5500e-008; // Wavelength of light used, m\n",
+"// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t\n",
+"t = lambda/(2*(mu_o - mu_e)); // The thickness of a half wave plate for wavelength, cm\n",
+"\n",
+"printf('\nThe thickness of a half wave plate for wavelength = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of a half wave plate for wavelength = 3.06e-004 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14: The_thickness_of_a_quarter_wave_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.14:: Page-4.24 (2009)\n",
+"clc; clear;\n",
+"mu_o = 1.55; // Refractive index of ordinary wave\n",
+"mu_e = 1.52; // Refractive index of extraordinary wave\n",
+"lambda = 5500e-008; // Wavelength of light used, m\n",
+"// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t\n",
+"t = lambda/(4*(mu_o - mu_e)); // The thickness of a quarter wave plate for wavelength, cm\n",
+"\n",
+"printf('\nThe thickness of a quarter wave plate for wavelength = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of a quarter wave plate for wavelength = 4.58e-004 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15: The_thickness_of_a_half_wave_plate_quartz.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.15:: Page-4.24 (2009)\n",
+"clc; clear;\n",
+"mu_o = 1.51; // Refractive index of ordinary wave\n",
+"mu_e = 1.55; // Refractive index of extraordinary wave\n",
+"lambda = 6000e-008; // Wavelength of light used, m\n",
+"// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t\n",
+"t = lambda/(2*(mu_e - mu_o)); // The thickness of a quarter wave plate for wavelength, cm\n",
+"\n",
+"printf('\nThe thickness of a half wave plate quartz = %4.2e cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of a half wave plate quartz = 7.50e-004 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.16: Difference_between_refractive_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.16:: Page-4.24 (2009)\n",
+"clc; clear;\n",
+"lambda = 5890e-008; // Wavelength of light used, m\n",
+"t = 7.5e-004; // Thickness of the crystal, cm\n",
+"// As for quarter wave plate, mu_diff*t = (mu_e - mu_o)*t = lambda/4, solving for mu_diff\n",
+"mu_diff = lambda/(4*t); // The difference in refractive indices of rays, cm\n",
+"printf('\nThe difference between refractive indices = %6.4f cm', mu_diff);\n",
+"\n",
+"// Result \n",
+"// The difference between refractive indices = 0.0196 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.17: Specific_rotation_of_superposition.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.17:: Page-4.34 (2009)\n",
+"clc; clear;\n",
+"theta = 15.2; // Angle through which plane of polarization is rotated, degrees\n",
+"c = 0.2; // Concentration of sugar, g/cc\n",
+"l = 25; // Length of sugar, cm\n",
+"S = 10*theta/(l*c); // Specific rotation of superposition, degrees\n",
+"\n",
+"printf('\nThe specific rotation of superposition = %4.1f cm', S);\n",
+"\n",
+"// Result \n",
+"// The specific rotation of superposition = 30.4 cm \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.18: Strength_of_sugar_solution.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.18: : Page-4.34 (2009)\n",
+"clc; clear;\n",
+"theta = 15.2; // Angle through which plane of polarization is rotated, degrees\n",
+"S = 65; // Specific rotation of sugar solution, degrees\n",
+"l = 15; // Length of sugar, cm\n",
+"// As S = 10*theta/(l*c), solving for c\n",
+"c = 10*theta/(l*S); // Concentration of sugar, g/cc\n",
+"\n",
+"printf('\nThe strength of sugar solution = %4.2f g/cc', c);\n",
+"\n",
+"// Result \n",
+"// The strength of sugar solution = 0.16 g/cc \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.19: Quantity_of_sugar_contained_in_the_tube_in_the_form_of_solution.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.19:: Page-4.34 (2009)\n",
+"clc; clear;\n",
+"theta = 15; // Angle through which plane of polarization is rotated, degrees\n",
+"S = 69; // Specific rotation of sugar solution, degrees\n",
+"l = 10; // Length of sugar, cm\n",
+"V = 50; // Volume of the tube, cc\n",
+"// As S = 10*theta/(l*c), solving for c\n",
+"c = 10*theta/(l*S); // Concentration of sugar, g/cc\n",
+"M = c*V; // Mass of sugar in solution, g\n",
+"\n",
+"printf('\nThe quantity of sugar contained in the tube in the form of solution = %5.2f g', M);\n",
+"\n",
+"// Result \n",
+"// The quantity of sugar contained in the tube in the form of solution = 10.87 g \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Refractive_index_of_the_material.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.1:: Page-4.5 (2009)\n",
+"clc; clear;\n",
+"ip = 60; // Polarizing angle, degrees\n",
+"mu = tand(ip); // Refractive index of the material from Brewster's law \n",
+"printf('\nThe refractive index of the material = %5.3f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the material = 1.732 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.20: Specific_rotation_of_sugar_solution_from_the_given_data.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.20:: Page-4.35 (2009)\n",
+"clc; clear;\n",
+"theta = 8; // Angle through which plane of polarization is rotated, degrees\n",
+"M = 10; // Amount of sugar, g\n",
+"l = 14; // Length of the tube, cm\n",
+"V = 44; // Volume of sugar solution, cc\n",
+"c = M/V; // Concentration of sugar, g/cc\n",
+"S = 10*theta/(l*c); // Specific rotation of sugar solution from the given data, degrees\n",
+"\n",
+"printf('\nThe specific rotation of sugar solution from the given data = %4.1f degrees', S);\n",
+"\n",
+"// Result \n",
+"// The specific rotation of sugar solution from the given data = 25.1 degrees \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.21: Angle_of_rotation_of_the_plane_of_polarization.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.21:: Page-4.35 (2009)\n",
+"clc; clear;\n",
+"m = 15; // Amount of sugar, g\n",
+"S = 66; // Specific rotation of sugar solution from the given data, degrees\n",
+"l = 20; // Length of the tube, cm\n",
+"V = 100; // Volume of sugar solution, cc\n",
+"c = m/V; // Concentration of sugar, g/cc\n",
+"// As S = 10*theta/(l*c), solving for theta\n",
+"theta = S*l*c/10; // Angle of rotation of the plane of polarization, degrees\n",
+"\n",
+"printf('\nThe angle of rotation of the plane of polarization = %4.1f degrees', theta);\n",
+"\n",
+"// Result \n",
+"// The angle of rotation of the plane of polarization = 19.8 degrees \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.22: Angle_of_rotation_of_the_optically_active_solution.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.22: : Page-4.35 (2009)\n",
+"clc; clear;\n",
+"l = 5; // Length of the tube, dm\n",
+"m = 50; // Amount of sugar, g\n",
+"S = 50; // Specific rotation of sugar solution, degrees\n",
+"V = 150; // Volume of sugar solution, cc\n",
+"c = m/V; // Concentration of sugar, g/cc\n",
+"// As S = theta/(l*c), solving for theta\n",
+"theta = S*l*c; // Angle of rotation of the optically active solution\n",
+"\n",
+"printf('\nThe angle of rotation of the optically active solution = %4.1f degrees', theta);\n",
+"\n",
+"// Result \n",
+"// The angle of rotation of the optically active solution = 83.3 degrees \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.23: Angle_of_rotation_in_a_tube_of_new_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.23:: Page-4.35 (2009)\n",
+"clc; clear;\n",
+"l = 3; // Length of the tube, dm\n",
+"theta = 17.0; // Angle of rotation of the plane of polarization, degrees\n",
+"c = 1.0; // For simplicity assume concentration of solution to be unity, g/cc\n",
+"l_prime = 2.5; // New length of the tube, dm\n",
+"c_prime = 1.25*c; // Concentration of solution with 25 cm length of tube, g/cc\n",
+"theta_prime = theta*l_prime*c_prime/(l*c); // Angle of rotation in a tube of new length\n",
+"\n",
+"\n",
+"printf('\nThe angle of rotation in a tube of new length of %3.1f cm = %4.1f degrees', l_prime, theta_prime);\n",
+"\n",
+"// Result \n",
+"// The angle of rotation in a tube of new length of 2.5 cm = 17.7 degrees \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.24: Mass_of_sugar_in_the_solution_contained_in_the_tube.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.24:: Page-4.36 (2009)\n",
+"clc; clear;\n",
+"l = 17; // Length of the tube, cm\n",
+"V = 37; // Volume of sugar solution, cc\n",
+"theta = 15; // Angle of rotation of the plane of polarization, degrees\n",
+"S = 68; // Specific rotation of sugar solution, degrees\n",
+"// As S = 10*theta/(l*c), solving for c\n",
+"c = 10*theta/(l*S); // Concentration of sugar solution, g/cc\n",
+"m = c*V; // Mass of sugar in the solution contained in the tube, g\n",
+"\n",
+"printf('\nThe mass of sugar in the solution contained in the tube = %3.1f g', m);\n",
+"\n",
+"// Result \n",
+"// The mass of sugar in the solution contained in the tube = 4.8 g \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.25: Percentage_purity_of_the_sugar_sample.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.25:: Page-4.36 (2009)\n",
+"clc; clear;\n",
+"m = 80; // Mass of sugar in the solution, g\n",
+"theta = 9.9; // Angle of rotation of the plane of polarization, degrees\n",
+"l = 20; // Length of the tube, cm\n",
+"S_pure = 66; // Specific rotation of pure sugar solution, degrees per dm per (g/cc)\n",
+"c = 0.08; // Concentration of sugar solution, g/cc\n",
+"S = 10*theta/(l*c); // calculated specific rotation of sugar solution, degrees per dm per (g/cc)\n",
+"percent_purity = S/S_pure*100; // Percentage purity of sugar sample, percent\n",
+"\n",
+"printf('\nThe percentage purity of the sugar sample = %5.2f percent', percent_purity);\n",
+"\n",
+"// Result \n",
+"// The percentage purity of the sugar sample = 93.75 percent \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.26: Angle_of_rotation_produced_by_the_polarimeter_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.26:: Page-4.42 (2009)\n",
+"clc; clear;\n",
+"lambda = 6600e-010; // Wavelength of circularly polarized light, cm\n",
+"mu_R = 1.53914; // Refractive index of right-handed circularly polarized light\n",
+"mu_L = 1.53920; // Refractive index of left-handed circularly polarized light\n",
+"t = 0.0005; // Thickness of polarimeter plate, m\n",
+"theta = %pi/lambda*(mu_L-mu_R)*t; // Angle of rotation produced by the polarimeter plate, radian\n",
+"\n",
+"printf('\nThe angle of rotation produced by the polarimeter plate = %4.2f degrees', theta*180/%pi);\n",
+"\n",
+"// Result \n",
+"// The angle of rotation produced by the polarimeter plate = 8.18 degrees \n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Polarization_by_reflection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.2:: Page-4.6 (2009)\n",
+"clc; clear;\n",
+"ip = 57; // Polarizing angle, degrees\n",
+"mu = tand(ip); // Refractive index of the material from Brewster's law \n",
+"printf('\nThe refractive index of the material = %4.2f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the material = 1.54 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Angle_of_refraction_of_the_ray.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.3:: Page-4.6 (2009)\n",
+"clc; clear;\n",
+"mu = 1.53; // Refractive index of the material from Brewster's law \n",
+"// As mu = tand(ip), solving for ip\n",
+"ip = atand(mu); // Polarizing angle, degrees\n",
+"// But mu = sind(ip)/sind(r), solving for r\n",
+"r = asind(sind(ip)/mu); // Angle of refraction, degrees\n",
+"\n",
+"printf('\nThe angle of refraction of the ray = %4.1f degrees', r);\n",
+"\n",
+"// Result \n",
+"// The angle of refraction of the ray = 33.2 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Angle_of_minimum_deviation_for_green_light.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.4:: Page-4.6 (2009)\n",
+"clc; clear;\n",
+"ip = 60; // Polarizing angle, degrees\n",
+"A = 60; // Angle of equilateral prism, degrees\n",
+"mu = tand(ip); // Refractive index of the material from Brewster's law \n",
+"// For angle of minimum deviation in prism, delta_m, refractive index\n",
+"// mu = sind((A+delta_m)/2)/sind(A/2), solving for delta_m\n",
+"delta_m = 2*asind(mu*sind(A/2))-A; // Angle of minimum deviation, degrees\n",
+"\n",
+"printf('\nThe angle of minimum deviation for green light = %2d degrees', ceil(delta_m));\n",
+"\n",
+"// Result \n",
+"// The angle of minimum deviation for green light = 60 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Polarizing_angles_of_the_materials_for_given_refractive_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.5:: Page-4.7 (2009)\n",
+"clc; clear;\n",
+"mu = [1.33 1.65 1.55]; // Refractive indices of the material\n",
+"// As mu = tand(ip), solving for ip\n",
+"ip = atand(mu); // Brewster's law gives polarizing angle, degrees\n",
+"for i =1:1:3 \n",
+"printf('\nmu = %4.2f, ip = %4.1f degrees', mu(i), ip(i));\n",
+"end\n",
+"\n",
+"// Result \n",
+"// mu = 1.33, ip = 53.1 degrees\n",
+"// mu = 1.65, ip = 58.8 degrees\n",
+"// mu = 1.55, ip = 57.2 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Angle_of_rotation_of_analyser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.6:: Page-4.8 (2009)\n",
+"clc; clear;\n",
+"E0 = 1; // For simplicity assume maximum intensity through polarizer and analyser to be unity, unit\n",
+"E = 1/6*E0; // One-sixth of the maximum intensity, unit\n",
+"// From Malus law, E = E0*cosd(theta)^2, solving for theta\n",
+"theta = acosd(sqrt(E)); // Angle through which analyser should be rotated, degrees\n",
+"printf('\nThe angle of rotation of analyser = %4.1f degrees', theta);\n",
+"\n",
+"// Result \n",
+"// The angle of rotation of analyser = 65.9 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Angles_of_rotation_of_analyser_for_given_transmitted_light_intensities.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.7:: Page-4.8 (2009)\n",
+"clc; clear;\n",
+"E0 = 1; // For simplicity assume maximum intensity through polarizer and analyser to be unity, unit\n",
+"light_fraction = [0.25 0.45 0.65 0.75 0.0];\n",
+"for i = 1:1:5\n",
+"E = light_fraction(i)*E0; // Light fraction of the maximum intensity, unit\n",
+"// From Malus law, E = E0*cosd(theta)^2, solving for theta\n",
+"theta = acosd(sqrt(E)); // Angle through which analyser should be rotated, degrees\n",
+"printf('\nE = %4.2fE0, theta = %4.1f degrees', light_fraction(i), theta);\n",
+"end\n",
+"\n",
+"// Result \n",
+"// E = 0.25E0, theta = 60.0 degrees\n",
+"// E = 0.45E0, theta = 47.9 degrees\n",
+"// E = 0.65E0, theta = 36.3 degrees\n",
+"// E = 0.75E0, theta = 30.0 degrees\n",
+"// E = 0.00E0, theta = 90.0 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: Angle_of_minimum_deviation_for_green_light.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.8:: Page-4.9 (2009)\n",
+"clc; clear;\n",
+"ip = 60; // Polarizing angle, degrees\n",
+"mu = tand(ip); // Brewster's law giving refractive index\n",
+"A = 60; // Angle of prism, degrees\n",
+"d = (mu - 1)*A; // Angle of minimum deviation for green light, degrees\n",
+"\n",
+"printf('\nThe angle of minimum deviation for green light = %5.2f degrees', d);\n",
+"\n",
+"// Result \n",
+"// The angle of minimum deviation for green light = 43.92 degrees \n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Ratio_of_ordinary_to_extraordinary_ray_intensities.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.9:: Page-4.9 (2009)\n",
+"clc; clear;\n",
+"theta = 30; // Angle which the plane of vibration makes with the incident beam, degrees\n",
+"// As intensity of ordinary and extraordinary ray are\n",
+"// E_E = A^2*cosd(theta)^2 and E_O = A^2*sind(theta)^2, solving for E_E/E_O\n",
+"EE_ratio_EO = cotd(30)^2; // Ratio of ordinary and extraordinary ray intensities \n",
+"\n",
+"printf('\nThe ratio of ordinary to extraordinary ray intensities = %d', EE_ratio_EO);\n",
+"\n",
+"// Result \n",
+"// The ratio of ordinary to extraordinary ray intensities = 3 \n",
+" "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_V_Yadav/5-Nuclear_Physics.ipynb b/Engineering_Physics_by_V_Yadav/5-Nuclear_Physics.ipynb
new file mode 100644
index 0000000..ebbdce8
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/5-Nuclear_Physics.ipynb
@@ -0,0 +1,263 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Nuclear Physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Mass_defect_of_He.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.1 :: Page-5.2 (2009)\n",
+"clc;clear;\n",
+"m_p = 1.007826; // Mass of a proton, amu\n",
+"m_n = 1.008665; // Mass of a neutron, amu\n",
+"M_He = 4.002604; // Measured mass of He nucleuc, amu\n",
+"delta_m = 2*m_p+2*m_n - M_He; // Mass defect of He, amu\n",
+"printf('\nThe mass defect of He = %f amu', delta_m);\n",
+"\n",
+"// Result\n",
+"// The mass defect of He = 0.030378 amu "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Maximum_energy_of_proton_in_a_cyclotron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.3 :: Page-5.16 (2009)\n",
+"clc;clear;\n",
+"B = 0.70; // Magnetic field of cyclotron, weber/metre square\n",
+"q = 1.6e-019; // Charge of the proton, C\n",
+"R = 3; // Radius of Dee's, m\n",
+"m = 1.67e-027; // Mass of the proton, kg\n",
+"E_max = B^2*q^2*R^2/(2*m); // Maximum energy of the proton in the cyclotron, joule\n",
+"printf('\nThe maximum energy of the proton in the cyclotron = %4.2e MeV', E_max/1.6e-013);\n",
+"\n",
+"// Result\n",
+"// The maximum energy of the proton in the cyclotron = 2.11e+02 MeV \n",
+"// The unit has been given wrong in the textbook. It should be MeV instead of eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Energy_of_an_electron_in_a_betatron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.4 :: Page-5.20 (2009)\n",
+"clc;clear;\n",
+"f = 1e+06; // Frequency of revolution of electron, Hz\n",
+"rate_phi_B = 25; // Rate of change of magnetic flux, wb/s\n",
+"E = f*rate_phi_B; // Energy of 'f' revolutios, eV\n",
+"printf('\nThe energy of the electron in Betatron after %g revolutions = %3.1e eV', f, E);\n",
+"\n",
+"// Result\n",
+"// The energy of the electron in Betatron after 1e+06 revolutions = 2.5e+07 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Final_energy_gained_by_electrons_in_a_betatron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.5 :: Page-5.20 (2009)\n",
+"clc;clear;\n",
+"e = 1.6e-019; // Charge on an electron, C\n",
+"D = 2.0; // Diameter of the stable orbit in betatron, m\n",
+"R = D/2; // Radius of the stable orbit in betatron, m\n",
+"B = 0.5; // Magnetic field of betatron, wb/metre square\n",
+"c = 3e+08; // final speed of electron in betatron, m/s\n",
+"E = B*e*R*c; // Final energy gained by electrons in a betatron, eV\n",
+"printf('\nThe final energy gained by electrons in the betatron = %3.1e eV', E/e);\n",
+"\n",
+"// Result\n",
+"// The final energy gained by electrons in the betatron = 1.5e+08 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Energy_produced_in_fission_of_U235.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.6 :: Page-5.27 (2009)\n",
+"clc;clear;\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"A = 235; // Atomic weight of uranium, gm/mol\n",
+"N_A = 6.023e+026; // No. of atoms present in 235 kg of uranium\n",
+"N = N_A/(A*1000); // No. of nuceli of uranium per gram\n",
+"E = N*200; // Energy produced by 1 g of U-235, MeV\n",
+"printf('\nThe energy produced by 1 g of U-235 = %3.1e joule', E*e*1e+06);\n",
+"\n",
+"// Result\n",
+"// The energy produced by 1 g of U-235 = 8.2e+10 joule "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Power_output_of_nuclear_reactor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.7 :: Page-5.32 (2009)\n",
+"clc;clear;\n",
+"A = 235; // Atomic weight of uranium, gm/mol\n",
+"N_A = 6.023e+026; // No. of atoms present in 235 kg of uranium-235\n",
+"N = N_A*5/A; // No. of nuceli of uranium in 5 kg of U-235\n",
+"E = N*200; // Energy released in the fission of 5 kg of U-235, MeV\n",
+"t = 24*3600; // Time taken to consume 5 kg of U-235, sec\n",
+"P = E/t; // Total power output of the nuclear reactor, MeV per second\n",
+"printf('\nThe total power output of the nuclear reactor = %4.2e MeV per second', P);\n",
+"\n",
+"// Result\n",
+"// The total power output of the nuclear reactor = 2.97e+22 MeV per second "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: Average_current_in_the_GM_counter_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.8 :: Page-5.34 (2009)\n",
+"clc;clear;\n",
+"e = 1.6e-019; // Electronic charge, C\n",
+"f = 450; // Count rate of GM counter, counts/min\n",
+"N = f*1e+08; // Total number of electrons collected per min\n",
+"Q = N*e; // Charge collected per min, C\n",
+"I = Q/60; // Averge current in the GM counter, A\n",
+"printf('\nThe averge current in the GM counter= %3.1e A', I);\n",
+"\n",
+"// Result\n",
+"// The averge current in the GM counter= 1.2e-10 A "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Energy_needed_to_remove_a_neutron_from_Ca_nucleus.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.9 :: Page-5.39 (2009)\n",
+"clc;clear;\n",
+"m_Ca_41 = 40.962278; // Mass of one Ca-41 nuclei, amu\n",
+"m_Ca_42 = 41.958618; // Mass of one Ca-41 nuclei, amu\n",
+"m_n = 1.008665; // Mass of a neutron, amu\n",
+"delta_m = m_Ca_42 - (m_Ca_41 + m_n); // Difference in the mass of Ca-42 and Ca_41 nuclei, amu\n",
+"E = delta_m*(931.49); // Binding energy of the missing neutron, MeV\n",
+"printf('\nThe energy needed to remove a neutron from Ca-42 nucleus = %5.2f MeV', abs(E));\n",
+"\n",
+"// Result\n",
+"// The energy needed to remove a neutron from Ca-42 nucleus = 11.48 MeV "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_V_Yadav/6-Semiconductors_and_Nano_Physics.ipynb b/Engineering_Physics_by_V_Yadav/6-Semiconductors_and_Nano_Physics.ipynb
new file mode 100644
index 0000000..69ccd09
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/6-Semiconductors_and_Nano_Physics.ipynb
@@ -0,0 +1,92 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Semiconductors and Nano Physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Resistivity_of_intrinsic_semiconductor_at_300_K.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.1:: Page-6.19 (2009)\n",
+"clc; clear;\n",
+"T = 300; // Temperature of pure semiconductor, K\n",
+"n_i = 2.5e+019; // Intrinsic carrier density, per metre square\n",
+"e = 1.6e-019; // Charge on an electron, C\n",
+"mu_e = 0.39; // Mobility of electrons, Sq.m/V/s\n",
+"mu_h = 0.19; // Mobility of holes, Sq.m/V/s\n",
+"sigma_i = e*n_i*(mu_e+mu_h); // Conductivity of intrinsic semiconductor at 300 K, mho/m\n",
+"rho_i = 1/sigma_i; // Resistivity of intrinsic semiconductor at 300 K, ohm-m\n",
+"\n",
+"printf('\nThe resistivity of intrinsic semiconductor at 300 K = %4.2f ohm-m', rho_i);\n",
+"\n",
+"// Result \n",
+"// The resistivity of intrinsic semiconductor at 300 K = 0.43 ohm-m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Velocity_of_electron_at_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.2: : Page-6.19 (2009)\n",
+"clc; clear;\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"E_F = 2.0*e; // Fermi level of Po, J\n",
+"m = 9.1e-031; // Mass of an electron, kg\n",
+"// As E_F = 1/2*m*v^2, solving for v\n",
+"v = sqrt(2*E_F/m); // Velocity of electron at Fermi level, m/s \n",
+"printf('\nThe Velocity of electron at Fermi level = %4.2e m/s', v);\n",
+"\n",
+"// Result \n",
+"// The Velocity of electron at Fermi level = 8.39e+05 m/s "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb b/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb
new file mode 100644
index 0000000..af2877e
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb
@@ -0,0 +1,372 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Fiber Optics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: Radius_of_core_for_single_mode_operation_in_step_index_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.10:: Page-7.14 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.480; // Refractive index of core material\n",
+"n2 = 1.47; // Refractive index of cladding material\n",
+"lambda = 850e-006; // Wavelength of light used, m\n",
+"NA = sqrt(n1^2-n2^2); // Numerical aperture of the step index fibre\n",
+"theta0 = asind(NA); // Maximum acceptance angle for the fibre, degrees\n",
+"M_N = 1; // Number of modes in step index cable\n",
+"// As number of modes, M_N = 1/2*V^2, solving for V\n",
+"V = sqrt(2*M_N); // V-number for the fibre\n",
+"// As V = 2*%pi*a/lambda*NA, solving for a\n",
+"a = V*lambda/(2*%pi*NA); // Radius of core for single mode operation in step index fibre, m\n",
+"printf('\nThe radius of core for single mode operation in step index fibre = %3.1e', a);\n",
+"// Result \n",
+"// The radius of core for single mode operation in step index fibre = 1.1e-03 \n",
+"// The ansswer is quoted wrong in the textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: Signal_attenuation_in_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.11: : Page-7.16 (2009)\n",
+"clc; clear;\n",
+"Pi = 1.5; // Input power to the optical fibre, mW\n",
+"Po = 0.5; // Output power to the optical fibre, mW\n",
+"L = 0.12; // Length of the optical fibre, km\n",
+"alpha_dB = 10/L*log10(Pi/Po); // Signal attenuation in optical fibre, dB/km\n",
+"\n",
+"printf('\nThe signal attenuation in optical fibre = %4.1f dB/km', alpha_dB);\n",
+"\n",
+"// Result \n",
+"// The signal attenuation in optical fibre = 39.8 dB/km "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Critical_angle_and_acceptance_angle_in_an_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.1:: Page-7.7 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.6; // Refractive index of core material of fibre\n",
+"n2 = 1.3; // Refractive index of cladding material of fibre\n",
+"phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n",
+"theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance angle of optical fibre, degrees\n",
+"\n",
+"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
+"printf('\nThe angle of acceptance cone = %5.1f degrees', 2*theta_Q);\n",
+"\n",
+"// Result \n",
+"// The critical angle of optical fibre = 54.3 degrees\n",
+"// The angle of acceptance cone = 137.7 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Critical_angle_acceptance_angle_and_numerical_aperture_in_an_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.2:: Page-7.8 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.50; // Refractive index of core material of fibre\n",
+"n2 = 1.47; // Refractive index of cladding material of fibre\n",
+"phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n",
+"NA = sqrt(n1^2-n2^2); // Numerical aperture for the fibre \n",
+"theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance angle of optical fibre, degrees\n",
+"\n",
+"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
+"printf('\nThe numerical aperture for the fibre = %5.3f', NA);\n",
+"printf('\nThe angle of acceptance cone = %5.1f degrees', theta_Q);\n",
+"\n",
+"// Result \n",
+"// The critical angle of optical fibre = 78.5 degrees\n",
+"// The numerical aperture for the fibre = 0.298\n",
+"// The angle of acceptance cone = 17.4 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Parameters_of_an_optical_fibre_using_relative_refractive_index_difference.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.3:: Page-7.8 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.46; // Refractive index of the core material\n",
+"delta = 0.01; // Relative refractive index difference\n",
+"NA = n1*sqrt(2*delta); // Numerical aperture for the fibre \n",
+"theta_Q = %pi*NA^2; // Solid acceptance angle of optical fibre for small angles, radians\n",
+"// As relative refractive index, delta = 1-n2/n1, solving for n2\n",
+"n2 = n1*(1-delta); // Refractive index of cladding\n",
+"phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n",
+"\n",
+"printf('\nThe numerical aperture for the fibre = %4.2f', NA);\n",
+"printf('\nThe solid acceptance angle of the optical fibre = %4.2f radians', theta_Q);\n",
+"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
+"\n",
+"// Result \n",
+"// The numerical aperture for the fibre = 0.21\n",
+"// The solid acceptance angle of the optical fibre = 0.13 radians\n",
+"// The critical angle of optical fibre = 81.9 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Refractive_index_of_cladding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.4:: Page-7.9 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.54; // Refractive index of the core material\n",
+"NA = 0.45; // Numerical aperture for the fibre \n",
+"n2 = sqrt(n1^2-NA^2); // Refractive index of cladding\n",
+"\n",
+"printf('\nThe refractive index of cladding = %4.2f', n2);\n",
+"\n",
+"// Result \n",
+"// The refractive index of cladding = 1.47 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Numerical_aperture_for_an_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.5:: Page-7.9 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.544; // Refractive index of the core material\n",
+"n2 = 1.412; // Refractive index of cladding\n",
+"NA = sqrt(n1^2-n2^2); // Numerical aperture for the fibre \n",
+"\n",
+"printf('\nThe numerical aperture for an optical fibre = %4.2f', NA);\n",
+"\n",
+"// Result \n",
+"// The numerical aperture for an optical fibre = 0.62 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Refractive_index_of_the_cladding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.6:: Page-7.9 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.544; // Refractive index of the core material\n",
+"theta0 = 35; // Acceptance angel for an optical fibre, degrees\n",
+"// As theta0 = asind(sqrt(n1^2-n2^2)), solving for n2\n",
+"n2 = sqrt(n1^2-sind(theta0)^2); // Refractive index of cladding\n",
+"\n",
+"printf('\nThe refractive index of the cladding = %4.2f', n2);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the cladding = 1.43 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: EX7_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.7:: Page-7.10 (2009)\n",
+"clc; clear;\n",
+"NA = 0.4; // Numerical aperture of the optical fibre\n",
+"n0 = 1; // Refractive index of fibre in air\n",
+"theta_a = asind(NA/n0); // Acceptance angle for meridional rays, degrees\n",
+"theta = 100; // Direction through which the skew rays are bent at each reflection, degrees\n",
+"r = theta/2; // Angle of reflection, degrees\n",
+"theta_as = asind(NA/(cosd(r)*n0)); // Acceptance angle for skew rays, degrees\n",
+"\n",
+"printf('\nAcceptance angle for meridional rays = %4.1f degrees', theta_a);\n",
+"printf('\nAcceptance angle for skew rays = %4.1f degrees', theta_as);\n",
+"\n",
+"// Result \n",
+"// Acceptance angle for meridional rays = 23.6 degrees\n",
+"// Acceptance angle for skew rays = 38.5 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: Normalized_frequency_for_V_number_for_the_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.8: : Page-7.13 (2009)\n",
+"clc; clear;\n",
+"NA = 0.16; // Numerical aperture of the step index fibre\n",
+"n1 = 1.50; // Refractive index of the core material\n",
+"d = 65e-006; // Diameter of the core, m\n",
+"lambda = 0.9e-006; // Wavelength of transmitted light, m\n",
+"V = %pi*d/lambda*NA; // V-number for the optical fibre\n",
+"\n",
+"printf('\nThe V-number for the optical fibre = %5.2f', V);\n",
+"\n",
+"// Result \n",
+"// The V-number for the optical fibre = 36.30 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: Number_of_modes_in_the_step_index_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.9:: Page-7.13 (2009)\n",
+"clc; clear;\n",
+"NA = 0.28; // Numerical aperture of the step index fibre\n",
+"d = 55e-006; // Diameter of the core, m\n",
+"lambda = 0.9e-006; // Wavelength of transmitted light, m\n",
+"M_N = (2.22*d*(NA)/lambda)^2; // Number of modes in the step index fibre\n",
+"\n",
+"printf('\nThe number of modes in the step index fibre = %4d degrees', M_N);\n",
+"\n",
+"// Result \n",
+"// The number of modes in the step index fibre = 1442 degrees "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_V_Yadav/8-Laser.ipynb b/Engineering_Physics_by_V_Yadav/8-Laser.ipynb
new file mode 100644
index 0000000..cb04ca1
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/8-Laser.ipynb
@@ -0,0 +1,184 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Laser"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: EX8_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.1:: Page-8.8 (2009)\n",
+"clc; clear;\n",
+"lambda = 31235; // Wavelength of prominent emission of laser, aangstrom\n",
+"E = 12400/lambda; // Energy difference between the two levels, eV\n",
+"\n",
+"printf('\nThe difference between upper and lower energy levels for the most prominent wavelength = %5.3f eV', E);\n",
+"\n",
+"// Result \n",
+"// The difference between upper and lower energy levels for the most prominent wavelength = 0.397 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Frequency_and_wavelength_of_carbon_dioxide_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.2:: Page-8.8 (2009)\n",
+"clc; clear;\n",
+"E = 0.121; // Energy difference between the two levels, eV\n",
+"lambda = 12400/E; // Wavelength of the radiation, angstrom\n",
+"f = 3e+08/(lambda*1e-010); // Frequency of the radiation, Hz\n",
+"\n",
+"printf('\nThe wavelength of the radiation = %8.1f angstrom', lambda);\n",
+"printf('\nThe frequency of the radiation = %4.2e Hz', f);\n",
+"\n",
+"// Result \n",
+"// The wavelength of the radiation = 102479.3 angstrom\n",
+"// The frequency of the radiation = 2.93e+13 Hz "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Energy_of_one_emitted_photon_and_total_energy_available_per_laser_pulse.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.3:: Page-8.8 (2009)\n",
+"clc; clear;\n",
+"lambda = 7000; // Wavelength of the Ruby laser, angstrom\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"N = 2.8e+019; // Total number of photons\n",
+"E = 12400/lambda; // Energy of one emitted photon, eV\n",
+"E_p = E*e*N; // Total energy available per laser pulse, joule\n",
+"\n",
+"printf('\nThe energy of one emitted photon = %4.2e J', E*e);\n",
+"printf('\nThe total energy available per laser pulse = %4.2f joule', E_p);\n",
+"\n",
+"// Result \n",
+"// The energy of one emitted photon = 2.83e-19 J\n",
+"// The total energy available per laser pulse = 7.94 joule "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Relative_population_of_levels_in_Ruby_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.4:: Page-8.9 (2009)\n",
+"clc; clear;\n",
+"lambda = 7000; // Wavelength of the emitted light, angstrom\n",
+"k = 8.6e-005; // Boltzmann constant, eV/K\n",
+"dE = 12400/lambda; // Energy difference of the levels, eV\n",
+"T = [300 500]; // Temperatures of first and second states, K\n",
+"for i = 1:1:2\n",
+" N2_ratio_N1 = exp(-(dE/(k*T(i)))); // Relative population\n",
+" printf('\nThe relative population at %d K = %3.1e', T(i), N2_ratio_N1);\n",
+"end\n",
+"\n",
+"// Result \n",
+"// The relative population at 300 K = 1.5e-30\n",
+"// The relative population at 500 K = 1.3e-18 \n",
+"// The answer is given wrong in the textbook for first part."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Population_of_two_states_in_He_Ne_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.5:: Page-8.9 (2009)\n",
+"clc; clear;\n",
+"lambda = 7000; // Wavelength of the emitted light, angstrom\n",
+"k = 8.6e-005; // Boltzmann constant, eV/K\n",
+"dE = 12400/lambda; // Energy difference of the levels, eV\n",
+"T = 27+273; // Temperatures of the state, K\n",
+"N2_ratio_N1 = exp(-(dE/(k*T))); // Relative population\n",
+"printf('\nThe relative population of two states in He-Ne laser at %d K = %3.1e', T, N2_ratio_N1);\n",
+"\n",
+"\n",
+"// Result \n",
+"// The relative population of two states in He-Ne laser at 300 K = 1.5e-30 \n",
+"// The answer is given wrong in the textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}