diff options
Diffstat (limited to 'Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb')
-rw-r--r-- | Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb | 263 |
1 files changed, 263 insertions, 0 deletions
diff --git a/Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb b/Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb new file mode 100644 index 0000000..688f608 --- /dev/null +++ b/Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb @@ -0,0 +1,263 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Radioactivity And Nuclear Reactions" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: energy_of_incident_particle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter13,Example13_1,pg 391\n", +"\n", +"//xMy -> x-mass no., M-element, y-atomic no.\n", +"\n", +"M7Li3=7.018232//mass of 7li3 (amu)\n", +"\n", +"Malpha=4.003874//mass of alpha particle (amu)\n", +"\n", +"Mpr=1.008145//mass of proton (amu)\n", +"\n", +"//reaction:- 7li3 + 1H1-> 4He2 + 4He2\n", +"\n", +"delM=M7Li3+Mpr-2*Malpha//mass defect\n", +"\n", +"Q=delM*931//1 amu= 931 Mev\n", +"\n", +"Ey=9.15//K.E energy of product nucleus\n", +"\n", +"Ex=2*Ey-Q//K.E of incident particle\n", +"\n", +"printf('kinetic energy of incident proton\n')\n", +"\n", +"printf('Ex=%.2f Mev',Ex)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: power_of_explosio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter13,Example13_2,pg 391\n", +"\n", +"M235U=235//at.mass of 235U\n", +"\n", +"m=10^-3\n", +"\n", +"N=6.023*10^23\n", +"\n", +"Eperfi=200*10^6//energy per fission\n", +"\n", +"E=Eperfi*1.6*10^-19//energy per fission (in joules)\n", +"\n", +"T=10^-6\n", +"\n", +"A=M235U\n", +"\n", +"P=((m*N)/A)*(E/T)//power output\n", +"\n", +"printf('power of explosion\n')\n", +"\n", +"printf('P=%.2f watt',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: mass_of_uranium_consumed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter13,Example13_4,pg 392\n", +"\n", +"n=0.4//efficiency\n", +"\n", +"N=6.023*10^23\n", +"\n", +"Eperfi=200*10^6//energy per fission\n", +"\n", +"E=Eperfi*1.6*10^-19\n", +"\n", +"P=100*10^6\n", +"\n", +"A=235\n", +"\n", +"T=24*60*60\n", +"\n", +"m=(P*A*T)/(n*N*E)\n", +"\n", +"printf('mass of 235U consumed/day\n')\n", +"\n", +"printf('m=%.2f gm',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: energy_liberated_per_reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter13,Example13_5,pg 392\n", +"\n", +"M2H1=2.01474\n", +"\n", +"M3H1=3.01700\n", +"\n", +"M1n0=1.008986\n", +"\n", +"M4He2=4.003880\n", +"\n", +"//thermonuclear reaction in hydrogen bomb explosion \n", +"\n", +"//2H1 + 3H1 -> 4He2 + 1n0\n", +"\n", +"Mreac=M2H1+M3H1//mass of reactants\n", +"\n", +"Mprod=M4He2+M1n0//mass of products\n", +"\n", +"Q=Mreac-Mprod\n", +"\n", +"Q=Q*931//converting in Mev\n", +"\n", +"printf('energy/reaction\n')\n", +"\n", +"printf('Q=%.2f Mev',Q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: calculate_binding_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter13,Example13_6,pg 393\n", +"\n", +"M7Li3=7.01818\n", +"\n", +"M1H1=1.0081\n", +"\n", +"M1n0=1.009\n", +"\n", +"BEpernu=(1/7)*((3*M1H1)+(4*M1n0)-M7Li3)//binding energy per nucleon\n", +"\n", +"BEpernu=BEpernu*931//converting in Mev\n", +"\n", +"printf('binding energy per nucleon\n')\n", +"\n", +"printf('BE=%.2f Mev',BEpernu)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: calculate_power_output.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter13,Example13_7,pg 394\n", +"\n", +"m=10*10^3\n", +"\n", +"N=6.023*10^23\n", +"\n", +"Eperfi=200*10^6//energy per fission\n", +"\n", +"E=Eperfi*1.6*10^-19//energy in joules\n", +"\n", +"A=235\n", +"\n", +"T=24*60*60\n", +"\n", +"P=((m*N)/A)*(E/T)\n", +"\n", +"printf('power output\n')\n", +"\n", +"printf('P=%.2f watt',P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |