summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb')
-rw-r--r--Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb263
1 files changed, 263 insertions, 0 deletions
diff --git a/Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb b/Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb
new file mode 100644
index 0000000..688f608
--- /dev/null
+++ b/Engineering_Physics_by_U_Mukherji/13-Radioactivity_And_Nuclear_Reactions.ipynb
@@ -0,0 +1,263 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Radioactivity And Nuclear Reactions"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: energy_of_incident_particle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter13,Example13_1,pg 391\n",
+"\n",
+"//xMy -> x-mass no., M-element, y-atomic no.\n",
+"\n",
+"M7Li3=7.018232//mass of 7li3 (amu)\n",
+"\n",
+"Malpha=4.003874//mass of alpha particle (amu)\n",
+"\n",
+"Mpr=1.008145//mass of proton (amu)\n",
+"\n",
+"//reaction:- 7li3 + 1H1-> 4He2 + 4He2\n",
+"\n",
+"delM=M7Li3+Mpr-2*Malpha//mass defect\n",
+"\n",
+"Q=delM*931//1 amu= 931 Mev\n",
+"\n",
+"Ey=9.15//K.E energy of product nucleus\n",
+"\n",
+"Ex=2*Ey-Q//K.E of incident particle\n",
+"\n",
+"printf('kinetic energy of incident proton\n')\n",
+"\n",
+"printf('Ex=%.2f Mev',Ex)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: power_of_explosio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter13,Example13_2,pg 391\n",
+"\n",
+"M235U=235//at.mass of 235U\n",
+"\n",
+"m=10^-3\n",
+"\n",
+"N=6.023*10^23\n",
+"\n",
+"Eperfi=200*10^6//energy per fission\n",
+"\n",
+"E=Eperfi*1.6*10^-19//energy per fission (in joules)\n",
+"\n",
+"T=10^-6\n",
+"\n",
+"A=M235U\n",
+"\n",
+"P=((m*N)/A)*(E/T)//power output\n",
+"\n",
+"printf('power of explosion\n')\n",
+"\n",
+"printf('P=%.2f watt',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: mass_of_uranium_consumed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter13,Example13_4,pg 392\n",
+"\n",
+"n=0.4//efficiency\n",
+"\n",
+"N=6.023*10^23\n",
+"\n",
+"Eperfi=200*10^6//energy per fission\n",
+"\n",
+"E=Eperfi*1.6*10^-19\n",
+"\n",
+"P=100*10^6\n",
+"\n",
+"A=235\n",
+"\n",
+"T=24*60*60\n",
+"\n",
+"m=(P*A*T)/(n*N*E)\n",
+"\n",
+"printf('mass of 235U consumed/day\n')\n",
+"\n",
+"printf('m=%.2f gm',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: energy_liberated_per_reaction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter13,Example13_5,pg 392\n",
+"\n",
+"M2H1=2.01474\n",
+"\n",
+"M3H1=3.01700\n",
+"\n",
+"M1n0=1.008986\n",
+"\n",
+"M4He2=4.003880\n",
+"\n",
+"//thermonuclear reaction in hydrogen bomb explosion \n",
+"\n",
+"//2H1 + 3H1 -> 4He2 + 1n0\n",
+"\n",
+"Mreac=M2H1+M3H1//mass of reactants\n",
+"\n",
+"Mprod=M4He2+M1n0//mass of products\n",
+"\n",
+"Q=Mreac-Mprod\n",
+"\n",
+"Q=Q*931//converting in Mev\n",
+"\n",
+"printf('energy/reaction\n')\n",
+"\n",
+"printf('Q=%.2f Mev',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6: calculate_binding_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter13,Example13_6,pg 393\n",
+"\n",
+"M7Li3=7.01818\n",
+"\n",
+"M1H1=1.0081\n",
+"\n",
+"M1n0=1.009\n",
+"\n",
+"BEpernu=(1/7)*((3*M1H1)+(4*M1n0)-M7Li3)//binding energy per nucleon\n",
+"\n",
+"BEpernu=BEpernu*931//converting in Mev\n",
+"\n",
+"printf('binding energy per nucleon\n')\n",
+"\n",
+"printf('BE=%.2f Mev',BEpernu)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.7: calculate_power_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter13,Example13_7,pg 394\n",
+"\n",
+"m=10*10^3\n",
+"\n",
+"N=6.023*10^23\n",
+"\n",
+"Eperfi=200*10^6//energy per fission\n",
+"\n",
+"E=Eperfi*1.6*10^-19//energy in joules\n",
+"\n",
+"A=235\n",
+"\n",
+"T=24*60*60\n",
+"\n",
+"P=((m*N)/A)*(E/T)\n",
+"\n",
+"printf('power output\n')\n",
+"\n",
+"printf('P=%.2f watt',P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}