summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K_Rajagopal
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal')
-rw-r--r--Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb506
-rw-r--r--Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb134
-rw-r--r--Engineering_Physics_by_K_Rajagopal/11-Semiconductors.ipynb306
-rw-r--r--Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb205
-rw-r--r--Engineering_Physics_by_K_Rajagopal/13-Magnetic_Materials.ipynb167
-rw-r--r--Engineering_Physics_by_K_Rajagopal/14-Dielectrics.ipynb201
-rw-r--r--Engineering_Physics_by_K_Rajagopal/2-Acoustics_Of_Buildings.ipynb291
-rw-r--r--Engineering_Physics_by_K_Rajagopal/3-Ultrasonics.ipynb135
-rw-r--r--Engineering_Physics_by_K_Rajagopal/4-Crystal_Physics.ipynb325
-rw-r--r--Engineering_Physics_by_K_Rajagopal/5-Wave_Optics.ipynb226
-rw-r--r--Engineering_Physics_by_K_Rajagopal/6-Lasers.ipynb116
-rw-r--r--Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb227
-rw-r--r--Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb177
-rw-r--r--Engineering_Physics_by_K_Rajagopal/9-Quantum_Physics.ipynb484
14 files changed, 3500 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb b/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb
new file mode 100644
index 0000000..5404944
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb
@@ -0,0 +1,506 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Elasticity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n = 2.8e10; // Rigidity modulus in Newton per meter suquare\n",
+"theta = 90; // In degress\n",
+"theta1 = theta*(%pi/180); // in radians\n",
+"l = 2; //Length of wire in meter\n",
+"r = 0.5e-3; // Radius of wire in meter\n",
+" t = (%pi^2 * n *r^4)/(4*l);\n",
+" disp('Nm',t,'Torque is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 50*1e-2; // length of wire in m\n",
+"a = 2e-3; // radius of wire in m\n",
+"theta = 45; // In degree\n",
+"theta1 = theta*(%pi/180); // In radian\n",
+"n = 8*1e8 //Rigidity modulus in Newton per meter square\n",
+"t = (0.5*%pi*n*a^4*theta1^2)/(2*l);\n",
+"disp('J',t,'Torque is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 1; // Length of wire in m\n",
+"a = 2e-3; // Radius of wire in m\n",
+"theta = %pi/2; // in radians\n",
+"theta1=theta*(180/%pi);//in degrees\n",
+"n = 5e10; // Rigidity modulus of wire in newton per square meter\n",
+"t = (%pi*n*a^4*theta)/(2*l); \n",
+"disp('Nm',t,'Torsional couple is ');\n",
+"y=a*theta1/(2*l);//angle of shear at surface\n",
+"disp('degree',y,'angle of shear at surface');\n",
+"z=y/2;//angle of shear at midway\n",
+"disp('degree',z,'angle of shear at midway');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//t=(pi*n*((2*a)^4)*theta)/(2*2*l)=(pi*n*((4*a)^4)*theta1)/(2*4*l)\n",
+"//by solving this we get : theta/theta1 = 256/16\n",
+"theta = 90; //theta\n",
+"theta1= 256/16;//theta/theta'\n",
+"theta2=theta/theta1;//theta'\n",
+"disp(+'degree',theta2,'The twist on the longer cylinder =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 0.5; // Length of wire in meter\n",
+"a = 2e-3; // Radius pf wire in meter\n",
+"theta = 30; // In degree\n",
+"Ashear = (a*theta)/l;//Angle of shear\n",
+"disp('degree',Ashear,'Angle of shear is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e = 1e-2; // Restoring couple per unit twist in Newton meter\n",
+"a = 6e-2; // Radius of cyinder in meter\n",
+"a1 = 0.10 // Internel diameter of hollow cylinder in meters\n",
+"a2 = sqrt(a^2 + a1^2); // Externel Diameter in meter\n",
+"disp(a2);\n",
+"c = (e * (a2^2 - a1^2))/(a^4);//Restoring couple per unit twist for hollow cylinder\n",
+"disp('Nm',c,'Restoring couple per unit twist for hollow cylinder is ');\n",
+"//There is slight variation in answer than book's answer..verified in calculator too"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 0.80; // Distance between the knife edges in meter\n",
+"r = 0.75e-2; // Radius of rod in meter\n",
+"m = 800e-3; // Mass of load in Kilogram\n",
+"dp = 0.030e-2; // depression on meter\n",
+"g = 9.8; // Gravity constant\n",
+"Y = (m*g*l^3)/(12*dp*%pi*r^4);\n",
+"disp('N/m^2',Y,'Youngs modulus of the material is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 1; // Length of beam in meter\n",
+"dp = 10e-3; // Depression in meter\n",
+"x = 0.4 // Distance at which depression is to be found in meter\n",
+"dpx = (dp*3*(x-x^2+x^3))/l^3;\n",
+"disp('m',dpx,'Depression at x = 0.4m is ');\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: example_18.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"dp = 12e-3; // Depression for a cantilever os another cantilever of some material of length, width of thickness three times the first case\n",
+"//delta=4mgl^3/ybd^3 here replace l=3l b=3b and d=3d so..\n",
+"dpd = dp/3;\n",
+"disp('m',dpd,'The depression in second cantilever is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Y = 2e12 // Youngs modulus of steel in dynes per cm square \n",
+"g = 981; // Gravity Constant in am per second square\n",
+"l = 400; // Length of wire in cm\n",
+"r = 0.1; // Radius of wire in cm\n",
+"deltaL = 0.1; // Change in length of wire in cm\n",
+"M = (Y * %pi * r^2 * deltaL )/(g*l*1000);\n",
+"disp('kg',M,'The mass to be added is',);\n",
+"//There is slight variation in answer than book's answer..verified in calculator too"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc; \n",
+"clear all;\n",
+"r = 0.15; // Radius of wire in cm\n",
+"A = %pi* r^2; // Area of wirw in cm square\n",
+"F = 200; // Force in dyne\n",
+"Y = 12.5e11; // Young's modulus in dyne per cm square\n",
+"t = ((F*9.8e5)/(A*Y))*100;\n",
+"disp('%',t,'Percentage of increase is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"lss = 5; // Length of steel wire in m \n",
+"as = 4e-5; // Cross section area of steel wire in square meters\n",
+"lc = 6; // Length of copper wire in m\n",
+"ac = 5e-5; // Cross section area of copper wire in square meters\n",
+"Ratio = (lss/as)*(ac/lc); // Ratio os youngs modulus of steel to copperAfter eliminating force and delta change\n",
+"disp(Ratio,'The ratio of youngs modulus of steel to copper is '); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"change = 0.01/100;\n",
+"h = 1e5; // Height\n",
+"rho = 1 // Density of water in gm per cm square\n",
+"g = 980 // Gravity constant in am per square cm\n",
+"deltap = h*g*rho;\n",
+"k = deltap/change;\n",
+"disp('dyne cm^-2',k,'Bulk modulus of sphere is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"deltav = 0.5; // change in volume\n",
+"v = 200; // initial volume in litres\n",
+"deltap = 100*1.013e5 // change in pressure in Pa\n",
+"k = (deltap/(deltav/v));\n",
+"disp('Pa',k,'Bulk modulus of liquid is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 0.4 // Length in meter\n",
+"A = 240e-4 // Area of slab in meter square\n",
+"F = 1e5 // Shaering force in newton\n",
+"n = 5.6e9 // Shear modulus in pa\n",
+"deltal = (F*l)/(n*A);\n",
+"disp('m',deltal,'The displacement is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 7; // Length of rubber cube\n",
+"n = 2e7; // Rigidity modulus in dyne per cm square\n",
+"F = 200*1000*981; // Force in dyne\n",
+"A = 49; // Area in cm square\n",
+"theta = (F/(A*n));\n",
+"disp('rad',theta,'Shearing stress is ' ) ;\n",
+"deltal = l*theta;\n",
+"disp('cm',deltal, 'Change is' );"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"A = 2e-4; // Area of steel wire in meter square\n",
+"Y = 2e11 // Young's modulus in Newton per meter square\n",
+"F = A*Y //l = L in this problem hence eliminating and rearranging equation of Y\n",
+"disp('N',F,'The value of force is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"sigma = 0.2; // Poisson's ratio\n",
+"changel = 2e-3; // longitudinal strain\n",
+"changev = (changel-(2*sigma*changel))*100;\n",
+"disp('%',changev,'Percentage change in volume is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb b/Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb
new file mode 100644
index 0000000..cd45c1c
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb
@@ -0,0 +1,134 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Energy Bands in Solids"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//E=Ef+1% of Ef\n",
+"k=1.38*1e-23;//boltzman constant\n",
+"e=1.6*1e-19;//charge of electron\n",
+"E=0.0555;\n",
+"//0.1=1/[(exp((E*e)/(k*T)))+1]\n",
+"T=E*e/(k*log(9));//Temprature\n",
+"disp(+'kelvin',T,'Temprature = ');\n",
+"//there is slight variation than book's answer.. checked in calculator also.(book's mistake)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"sx=0.01 //in ev. where x=E-Ef\n",
+"x1=sx*1.6*1e-19 //converting it in joule\n",
+"T=200 //in kelvin\n",
+"Fe=1/(1+exp(x1/(1.38*1e-23*T)));//The value of F(E) \n",
+"disp(Fe,'The value of F(E) =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"density=7.13*1e3 //in kg/m^3\n",
+"M=65.4\n",
+"N=6.023*1e26 //avogedro number\n",
+"n=(2*density*N)/M\n",
+"n1=n^(2/3);\n",
+"Ef=3.65*1e-19*n1; //in eV\n",
+"Ef1=(3/5)*Ef //in eV\n",
+"disp(+'eV',Ef,'fermi energy =');\n",
+"disp(+'eV',Ef1,'Mean energy at T=0K =');\n",
+"//there is slight variation in answer than book's answer.. checked in calculator too..(book's mistake)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Ef=5.51 //in eV\n",
+"E=(3/5)*Ef;//The average energy of a free electron in silver at 0k\n",
+"disp(+'eV',E,'The average energy of a free electron in silver at 0k =')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/11-Semiconductors.ipynb b/Engineering_Physics_by_K_Rajagopal/11-Semiconductors.ipynb
new file mode 100644
index 0000000..67c5fe1
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/11-Semiconductors.ipynb
@@ -0,0 +1,306 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.10: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"P=8.9*1e-3;//resistivity of doped sillicon\n",
+"Rh=3.6*1e-4;//hall coefficient\n",
+"e=1.6*1e-19;//charge of electron\n",
+"ne=3*%pi/(8*Rh*e);//carrier density of electron\n",
+"disp('m^-3',ne,'carrier density of electron is=');\n",
+"ue=1/(P*ne*e);//mobility of electon\n",
+"disp('m^2*V^-1*s^-1',ue,'mobility of electon is=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Pi=0.47;//given resistivity of intrinsic germanium\n",
+"sigmai=1/Pi;//conductance\n",
+"e=1.6*1e-19;//charge of electron\n",
+"ue=0.38;//electron mobility\n",
+"up=0.18;//hole mobility\n",
+"ni=sigmai/(e*(ue+up));//intrinsic carrier density at 300K \n",
+"disp('m^-3',ni,'intrinsic carrier density at 300K temp=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e=1.6*1e-19;//charge of electron\n",
+"ue=0.39;//electron mobility\n",
+"up=0.19;//hole mobility\n",
+"ni=2.4*1e19;//intrinsic carrier density \n",
+"sigma=ni*e*(up+ue);\n",
+"disp('ohm^-1*m^-1',sigma,'conductivity of intrinsic semiconductor=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m0=9.1*1e-31;\n",
+"me=0.12*m0;\n",
+"mp=0.28*m0;\n",
+"Eg=0.67*1.6*1e-19\n",
+"k=1.38*1e-23;//boltzman constant\n",
+"h=6.62*1e-34;//plank's constant\n",
+"T=300;\n",
+"ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T));//intrinsic carrier concentration\n",
+"disp('m^-3',ni,'intrinsic carrier concentration is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Eg1=0.36*1.6*1e-19;\n",
+"Eg2=0.72*1.6*1e-19\n",
+"k=1.38*1e-23;//boltzman constant\n",
+"T=300;//tempreture in kelvin\n",
+"//in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T))ratio of nip/niq is given by:\n",
+"x=exp((Eg2-Eg1)/(2*k*T));//ratio of nip/niq\n",
+"disp(x,'ratio of nip/niq is=');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e=1.6*1e-19;//charge of electron\n",
+"ue=0.39;//electron mobility\n",
+"up=0.19;//hole mobility\n",
+"ni=2.5*1e19;//intrinsic carrier density \n",
+"l=1e-2;//length of Ge rode\n",
+"a=1e-4;//area of Ge rode\n",
+"sigma=ni*e*(up+ue);//conductivity of intrinsic semiconductor\n",
+"disp('ohm^-1*m^-1',sigma,'conductivity of intrinsic semiconductor=');\n",
+"P=1/sigma;\n",
+"R=P*l/a;//resistance of Ge rode\n",
+"disp('ohm',R,'resistance of Ge rode');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"ue=3850;//mobility of electron\n",
+"sigma=5;//conductivity of ntype semiconductor\n",
+"e=1.6*1e-19;//charge of electron\n",
+"Nd=sigma/(e*ue);//density of donor atoms\n",
+"disp('cm^-3',Nd,'density of donor atoms is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"//let Ef-Ev=0.4eV=x and Ef1-Ev=y\n",
+"x=0.4;//Ef-Ev in eV\n",
+"k=1.38*1e-34;//boltzmann constant\n",
+"T=300;//tempreture in kelvin\n",
+"//now p=Nv*exp(-x/(k*T))=Na and p'=Nv*exp(-y/(k*T))=2Na so ratio of this 2 is 2=exp(x-y/(k*T))\n",
+"y=x-k*T*log(2);//Ef1-Ev in eV\n",
+"disp('eV',y,'Ef1-Ev in eV is=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"//let Ec1-Ef=0.3eV=x and Ec2-Ef=y\n",
+"x=0.3;//Ec-Ef in eV\n",
+"T1=300;//tempreture in kelvin\n",
+"T2=330;//tempreture in kelvin\n",
+"//Ec-Ef=k*T*log(Nc/Nd) so..\n",
+"y=T2*x/T1;//Ec2-Ef in eV\n",
+"disp('eV',y,'Ec2-Ef in eV is=');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"B=0.5;//given flux density\n",
+"d=3*1e-3;//given thickness\n",
+"J=500;//given current density\n",
+"n=1e21;//given donor density\n",
+"e=1.6*1e-19;//charge of electron\n",
+"Vh=(B*J*d/(n*e));//hall voltage\n",
+"disp('V',Vh,'hall voltage is=');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb
new file mode 100644
index 0000000..c5c372e
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb
@@ -0,0 +1,205 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Superconductivity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Tc=7.26;//critical tempreture in kelvin\n",
+"H0=8*1e5/(4*%pi);//magnetic field at 0K\n",
+"T=5;//tempreture in kelvin\n",
+"Hc=H0*(1-(T/Tc)^2);//megnrtic field at 5K\n",
+"disp('A/m',Hc,'megnrtic field at 5K tempreture');\n",
+"//there is variation in the answer than book.. checked in calculator too.."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Tc=0.3;//given tempareture in kelvin\n",
+"thetad=300;\n",
+"//part a\n",
+"N0g=-1/(log(Tc/thetad));\n",
+"disp(N0g,'the value of N0g is');\n",
+"//part b\n",
+"kB=1.38*1e-23;//boltzmann constant\n",
+"Eg=3.5*kB*Tc;//energy\n",
+"disp('J',Eg,'energy is=');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"H0=0.0306;//given constant characteristic of lead material\n",
+"Tc=3.7;//given tempareture in kelvin\n",
+"T=2;//given tempareture in kelvin\n",
+"x=(T/Tc)*(T/Tc);\n",
+"Hc=H0*(1-x);//value of magnetic field at 2K temp\n",
+"disp('T',Hc,'value of magnetic field at 2K temp=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"HcT=2*1e5/(4*%pi);//magnetic field intensity at T K\n",
+"Hc0=3*1e5/(4*%pi);//magnetic field intensity at T=0K\n",
+"Tc=3.69;//given temperature in K\n",
+"T=sqrt(1-(HcT/Hc0))*Tc;//tempreture in K\n",
+"disp('K',T,'temperature of superconducture is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"H0=6.5*1e4;//given constant characteristic of lead material\n",
+"Tc=7.18;//given temprature in kelvin\n",
+"T=4.2;//given temprature in kelvin\n",
+"//part a\n",
+"x=(T/Tc)*(T/Tc);\n",
+"Hc=H0*(1-x);//value of magnetic field at 4.2K temp\n",
+"disp('A/M',Hc,'value of magnetic field at 4.2K temp=');\n",
+"//part b\n",
+"r=1e-3/2;//given radius\n",
+"Ic=2*%pi*r*Hc;//critical current\n",
+"disp('A',Ic,'critical current is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"lemdaT=750;//given penetration depth at T=3.5K\n",
+"Tc=4.22;//given critical tempreture\n",
+"T=3.5;////given tempareture\n",
+"//part a\n",
+"x=(T/Tc)^4;//temporary variable\n",
+"lemda0=lemdaT/sqrt(1-x);//penetration depth at T=0K\n",
+"disp('Angstrome',lemda0,'penetration depth at T=0K is=');\n",
+"//part b\n",
+"N=6.02*1e26;//given\n",
+"alpha=13.55*1e3;//given\n",
+"M=200.6;//given\n",
+"n0=N*alpha/M;\n",
+"disp('/m^3',n0,'molecular density=');\n",
+"ns=n0*(1-(T/Tc)^4);//superconducting electron density\n",
+"disp('/m^3',ns,'superconducting electron density=');\n",
+"//Result printed wrong in book"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/13-Magnetic_Materials.ipynb b/Engineering_Physics_by_K_Rajagopal/13-Magnetic_Materials.ipynb
new file mode 100644
index 0000000..878df75
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/13-Magnetic_Materials.ipynb
@@ -0,0 +1,167 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Magnetic Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"u0=4*%pi*1e-7;\n",
+"H=1e7;//magnetic field strength\n",
+"X=(-0.9)*1e-6;//magnetic suseptiblity\n",
+"M=X*H;//magnetization of material\n",
+"disp('A/m',M,'magnetization of material is=');\n",
+"B=u0*H;//magnetic flux density\n",
+"disp('Wb/m^2',B,'magnetic flux density is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"X=2*1e-3;//magnetic suseptibility of material at room temp.\n",
+"H=1e3;//magnetic field intrnsity of piece of ferricoxide\n",
+"u0=4*%pi*1e-7;\n",
+"M=X*H;//magnetization\n",
+"disp('A/m',M,'magnetization is=');\n",
+"ur=X+1;//relative permiability\n",
+"B=u0*ur*H;//magnetic flux density\n",
+"disp('W/m^2',B,'magnetic flux density is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"M=2.74*1e8;//magnetization per atom in A/m\n",
+"a=2.66*1e-10;//elementry cube edge\n",
+"n=2;//Iron in BCC\n",
+"B=(M*a*a*a)/2;//Am^2 per atom\n",
+"disp('Am^2',B,'Am^2 per atom=');\n",
+"//interms of bohr megneton\n",
+"b=B/(9.27*1e-24);//dipole moment\n",
+"disp('bohr megnaton/atom',b,'dipole moment is=');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"u0=4*%pi*1e-7;\n",
+"b=9.27*1e-24;\n",
+"H=1e3;//homogeneous field\n",
+"k=1.38*1e-23;//boltzmann constant\n",
+"T=303;//temp in kelvin\n",
+"T1 = T - 273; // Temp In Degree\n",
+"x=u0*b*H/(k*T);//avg magnetic moment\n",
+"disp('bohr magneton/spin',x,'avg magnetic moment is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"ur=16;//relative permiability\n",
+"I=3300;//intensity of magnetization\n",
+"H=I/(ur-1);//strength of the field\n",
+"disp('A/m',H,'strength of the field');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/14-Dielectrics.ipynb b/Engineering_Physics_by_K_Rajagopal/14-Dielectrics.ipynb
new file mode 100644
index 0000000..6a0ee35
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/14-Dielectrics.ipynb
@@ -0,0 +1,201 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Dielectrics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"er=1.0000684;//dielectric constant of helium \n",
+"N=2.7*1e25;//atoms/m^3\n",
+"r=(er-1)/(4*%pi*N);\n",
+"R=r^(1/3); //radius of electron cloud\n",
+"disp('m',R,'radius of electron cloud is');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"k=1.38*1e-23;//boltzmann constant\n",
+"N=1e27;//HCL molecule per cubic meter\n",
+"E=1e6;//electric field of vapour\n",
+"D=3.33*1e-30;\n",
+"pHCL=1.04*D;\n",
+"T=300;//tempreture in kelvin\n",
+"alpha=(pHCL)^2/(3*k*T);\n",
+"p0=N*alpha*E;//orientation polarization\n",
+"disp('C/m^2',p0,'orientation polarization is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"alpha=0.35*1e-40;//polarizability of gas\n",
+"N=2.7*1e25;\n",
+"e0=8.854*1e-12;//permittivity of vacume\n",
+"er=1+(N*alpha/e0);//relative permittivity\n",
+"disp(er,'relative permittivity is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"er=12;//relative permittivity\n",
+"N=5*1e28;//atoms/m^3\n",
+"e0=8.854*1e-12;//permittivity of vacume\n",
+"x=(er-1)/(er+2);\n",
+"alpha=(3*e0/N)*x;//electrical polarizability\n",
+"disp('F*m^2',alpha,'electrical polarizability');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"C=2.4*1e-12;//given capacitance in F\n",
+"e0=8.854*1e-12;//permittivity of vacume\n",
+"a=4*1e-4;//area in m^2\n",
+"d=0.5*1e-2;//thickness\n",
+"tandelta=0.02;\n",
+"er=(C*d)/(e0*a);//relative permittivity\n",
+"disp(er,'relative permittivity is=');\n",
+"lf=er*tandelta;//loss factor\n",
+"disp(lf,'electric loss factor is=');\n",
+"delta=atan(0.02);\n",
+"PA=90-delta;//phase angle\n",
+"disp(PA,'phase angle is=');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"er=8;//relative permittivity\n",
+"a=0.036;//area in m^2\n",
+"e0=8.854*1e-12;//permittivity of vacume\n",
+"C=6*1e-6;//capacitance in F\n",
+"V=15;//potential difference\n",
+"d=e0*er*a/C;\n",
+"E=V/d;//field strength\n",
+"disp('V/m',E,'field strength is=');\n",
+"dpm=e0*(er-1)*E;//dipole moment/unit volume\n",
+"disp('C/m^2',dpm,'dipole moment/unit volume=');\n",
+"//slight variation in ans than book.. checked in calculator also(Mistake in textbook)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/2-Acoustics_Of_Buildings.ipynb b/Engineering_Physics_by_K_Rajagopal/2-Acoustics_Of_Buildings.ipynb
new file mode 100644
index 0000000..300917e
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/2-Acoustics_Of_Buildings.ipynb
@@ -0,0 +1,291 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Acoustics Of Buildings"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"v=45*100*17.78;//in m^3\n",
+"absorp1=(700*0.03)+(600*0.06)+(400*0.025)+(600*0.3);\n",
+"absorp_p=600*4.3;\n",
+"T1=(0.16*v)/(absorp1);//Reverbaration time (empty hall) \n",
+"T2=(0.16*v)/(absorp_p+absorp1);//Reverbaration time with full capacity\n",
+"disp(+'second',T1,'Reverbaration time (empty hall) =');\n",
+"disp(+'second',T2,'Reverbaration time with full capacity =');\n",
+"//There is slight variation in answer than book's answer..verified in calculator too.(mistake in textbook)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//delta_L=L2-L1\n",
+"//I proportional to square of amplitude so when amplitude is doubled intensity will becomes 4 times \n",
+"//L1=10*l0g10(I1/I0)\n",
+"//L2=10*log10(I2/I0)\n",
+"//delta_L=L2-L1\n",
+"//delta_L=10*log(I1/I0)-10*log(I2/I0)=10*log(I2/I1)\n",
+"I21=4;//I2/I1=4 because intensity=amp^2\n",
+"delta_L=10*log10(I21);//increase in intensity level\n",
+"disp(+'dB',delta_L,'increase in intensity level =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//L2-L1=10*log10(I2/I1)\n",
+"//so , we can write that \n",
+"L2=40 //i dB\n",
+"L1=10 //in dB \n",
+"//where L1 and L2 are intensity level of two waves of same frequency\n",
+"L=L2-L1;\n",
+"//let I2/I1=I\n",
+"I=10^(L/10);\n",
+"//let a2/a1=a\n",
+"a=sqrt(I);//Ratio of their amplitudes \n",
+"disp(a,'Ratio of their amplitudes = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"I1=25.2 //in Wm^-2\n",
+"I2=0.90 //in Wm^-2\n",
+"B=10*log10(I1/I2) //Relative loudness of sound in dB\n",
+"disp(+'dB',B,'Relative loudness of sound = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"I=1e4 //in W/(m*m)\n",
+"I0=1e-12 //in W/(m*m)\n",
+"B=10*log10(I/I0);//intensity level\n",
+"disp(+'dB',B,'intensity level = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"B=5 // in dB\n",
+"//B=10*log(I2/I1)\n",
+"//let I2/I1=x\n",
+"//10*log(x)=5\n",
+"x=10^(5/10);\n",
+"disp('times more intense than the unamplified sound',x,'Amplified sound is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"d=198; //in meter\n",
+"t=1.2;//in second\n",
+"//velocity=distance/time\n",
+"v=2*d/t;//velocity\n",
+"disp(+'m/s',v,'velocity =');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//need to find absorption coefficient\n",
+"V=5600 //in m^3\n",
+"T=2 //in second\n",
+"s=700 //in m^2\n",
+"a=0.16*V/(s*T)\n",
+"disp(a,'absorption coefficient =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"absorp1=92.90; //in m^^2\n",
+"absorp2=92.90;//in m^2\n",
+"V=2265.6;//in m^3\n",
+"T1=0.16*V/(absorp1);\n",
+"T2=0.16*V/(absorp1+absorp2);\n",
+"ans=T2/T1;//effect on Reverberation time\n",
+"disp(+'of its original value',ans,'Reverberation time will reduced to ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"v=25.2*20.3*8.04 ;//in m^3\n",
+"T=0.75; //in second\n",
+"absorp1=500*0.3176 ;//in m^2\n",
+"absorp2=(0.16*v)/T;\n",
+"T1=(0.16*v)/(absorp1+absorp2);//reverbaration time\n",
+"disp(+'second',T1,'reverbaration time =');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/3-Ultrasonics.ipynb b/Engineering_Physics_by_K_Rajagopal/3-Ultrasonics.ipynb
new file mode 100644
index 0000000..7881c7c
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/3-Ultrasonics.ipynb
@@ -0,0 +1,135 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Ultrasonics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"t=1.6*1e-3 //thickness in meter\n",
+"v=5760 //velocity in m/s\n",
+"lemda=2*t//wavelength\n",
+"f=v/lemda//fundamental frequency \n",
+"disp(+'Hz',f,'fundamental frequency =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"t=40*1e-2;\n",
+"//pulse covers 2x distance in arriving back\n",
+"//so, 30*1e-6=2*x/v\n",
+"//and, 2nd pulse will cover a distance of 2*40 cm in 80*1e-6 seconds\n",
+"//therfore, 80*1e-6=(2*40*1e-2)/v\n",
+"//compare both equation\n",
+"e1=30;\n",
+"e2=40*2\n",
+"x=e1*t*2/(2*e2);\n",
+"disp(+'m',x,'distanc of the flow from near end =') "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f_diff=50*1e3 //in Hz\n",
+"v=5000 //in m/s\n",
+"//f1=v/2*t\n",
+"//f2=2v/2t\n",
+"//f2-f1=v/2t\n",
+"t=v/(2*f_diff)\n",
+"disp(+'meter',t,'Thickness of steel plate =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f=1e6 //frequency in Hz\n",
+"L=1 //inductance in henry\n",
+"//f=(1/2*pi)*(sqrt(1/(L*C)))\n",
+"c=1/(4*%pi^2*f^2*L);//capacitance\n",
+"disp(+'F',c,'capacitance =')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/4-Crystal_Physics.ipynb b/Engineering_Physics_by_K_Rajagopal/4-Crystal_Physics.ipynb
new file mode 100644
index 0000000..7ed37a5
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/4-Crystal_Physics.ipynb
@@ -0,0 +1,325 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Crystal Physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//let three intercepts are I1,I2,I3\n",
+"I1=0.96;\n",
+"I2=0.64;\n",
+"I3=0.48;\n",
+"//as they are ratios we will multiply by some some constants so that it will become integers\n",
+"I1=6;\n",
+"I2=4;\n",
+"I3=3 ;\n",
+"//let their reciprocals are I1_1,I2_1,I3_1\n",
+"I1_1=1/I1;\n",
+"I2_1=1/I2;\n",
+"I3_1=1/I3;\n",
+"//LCM of I1_1,I2_1,I3_1 are 12. \n",
+"//By multiply LCM with I1_!,I2_1,I3_1 we will get miller indices\n",
+"LCM=12;\n",
+"M_1=LCM*I1_1;\n",
+"M_2=LCM*I2_1 ;\n",
+"M_3=LCM*I3_1;\n",
+"disp(M_1,'Miller indices of plane =');\n",
+"disp(M_2);\n",
+"disp(M_3);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"r=1.278*1e-8 ;//atomic radius in cm\n",
+"M=63.5; //atomic weight\n",
+"N=6.023*1e23; //avogadro number\n",
+"n=4//for fcc n=4\n",
+"a=4*r/(sqrt(2));\n",
+"density=n*M/(N*a^3);//Density of copper\n",
+"disp(+'g/cc',density,'Density of copper =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"M=58.45;//atomic mass\n",
+"N=6.02*1e23;//avogadro number\n",
+"density=2.17*1e3 ; //in kg/m^3\n",
+"n=4 //Nacl is FCC\n",
+"a=(n*M/(N*density))^(1/3);//lattice constant\n",
+"disp(+'m',a,'lattice constant = ');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//let three intercepts are I1,I2,I3\n",
+"I1=3;\n",
+"I2=-2;\n",
+"I3=3/2;\n",
+"//let their reciprocals are I1_1,I2_1,I3_1\n",
+"I1_1=1/I1;\n",
+"I2_1=1/I2;\n",
+"I3_1=1/I3;\n",
+"//LCM of I1_1,I2_1,I3_1 are 6 . \n",
+"//By multiply LCM with I1_!,I2_1,I3_1 we will get miller indices\n",
+"LCM=6;\n",
+"M_1=LCM*I1_1;\n",
+"M_2=LCM*I2_1 ;\n",
+"M_3=LCM*I3_1;\n",
+"disp(M_1,'Miller indices of plane =');\n",
+"disp(M_2);\n",
+"disp(M_3);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"r=1.246 //in A\n",
+"a=4*r/sqrt(2)\n",
+"d_200=3.52/sqrt(4+0+0)\n",
+"disp(+'m',d_200*1e-10,'d200 = ')\n",
+"d_220=3.52/sqrt(4+4)\n",
+"disp(+'m',d_220*1e-10,'d220 = ')\n",
+"d_111=3.52/sqrt(1+1+1)\n",
+"disp(+'m',d_111*1e-10,'d111 = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"h=1\n",
+"k=1\n",
+"l=1\n",
+"h1=1\n",
+"k1=1\n",
+"l1=1\n",
+"a=((h*h1)-(k*k1)+(l*l1))/(sqrt((h*h)+(k*k)+(l*l))*sqrt((h1*h1)+(k1*k1)+(l1*l1)));\n",
+"//cosine angle=a so angle=cosine inverse of a\n",
+"thita=acosd(a);//angle between two planes\n",
+"disp(+'degree',thita,'angle between two planes =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"a=2.9*1e-8; //in cm\n",
+"M=55.85;//atomic mass\n",
+"density=7.87 //in g/cc\n",
+"N=6.023*1e23;\n",
+"n=(a^3*N*density)/M;//Number of atoms per unit cell\n",
+"disp(n,'Number of atoms per unit cell =');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"M=55.85;//atomic mass\n",
+"d=7.86 //density of iron in g/cc\n",
+"N=6.023*1e23\n",
+"n=2//BCC structure\n",
+"a=((n*M)/(N*d))^(1/3);\n",
+"r=(sqrt(3)*a)/4;//radius of iron atom \n",
+"disp(+'cm',r,'radius of iron atom =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"M=207.21;//atomic mass\n",
+"d=11.34*1e3 //in kg/m^3\n",
+"N=6.023*1e26 //in kg/m^3\n",
+"n=4;//for FCC\n",
+"a=((n*M)/(N*d))^(1/3);//lattice constant\n",
+"r=(sqrt(2)*a)/4;//Atomic radius\n",
+"disp(+'m',a,'lattice constant =');\n",
+"disp(+'m',r,'Atomic radius =');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=1;\n",
+"thita=30;//angle in degree\n",
+"lamda=1.75; //in A\n",
+"h=1;\n",
+"k=1;\n",
+"l=1;\n",
+"//d111=a/sqrt((h*h)+(k*k)+(l*l))\n",
+"//2dsin(thita)=n*lamda\n",
+"d=n*lamda/(2*sind(thita));\n",
+"a=sqrt(3)*d;//lattice constant \n",
+"disp(+'meters',a*1e-10,'lattice constant =')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/5-Wave_Optics.ipynb b/Engineering_Physics_by_K_Rajagopal/5-Wave_Optics.ipynb
new file mode 100644
index 0000000..69d872e
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/5-Wave_Optics.ipynb
@@ -0,0 +1,226 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Wave Optics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"refractive_index=1.65 //refractive index\n",
+"lamda=5893*1e-10;//wavelength\n",
+"n=400;\n",
+"t=n*lamda/(2*(refractive_index-1));//Thickness of film\n",
+"disp(+'meter',t,'Thickness of film = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"x=0.40*1e-3; //in meter\n",
+"n=900;\n",
+"lamda=2*x/n;//Wavelength of light in meters\n",
+"lamda1=lamda/1e-10;//Wavelength of light in A\n",
+"disp(+'Angstorm',lamda1,'Wavelength of light in A =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"lamda=5893*1e-10;//wavelength of monocromatic light\n",
+"n=4000;\n",
+"x=n*lamda/2;//distance moved by mirror M1\n",
+"disp(+'meter',x,'distance moved by mirror M1 =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"lamda=5461*1e-10;//wavelength of light\n",
+"n=8;//no of frings\n",
+"t=6*1e-6;//in meter\n",
+"u=((n*lamda)/(2*t))+1;//refractive index of material\n",
+"disp(u,'refractive index of material =');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"ue=1.553;//given ue\n",
+"u0=1.544;//given uo\n",
+"lamda=500*1e-9;//in meter\n",
+"t=lamda/(4*(ue-u0));//The thickness of quarter wave plate\n",
+"disp(+'meter',t,'The thickness of quarter wave plate =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"lamda=5893*1e-10;//in meter\n",
+"ue=1.55333;//given ue\n",
+"u0=1.5442;//given u0\n",
+"t=lamda/(2*(ue-u0));//Thicknesss of half wave plate\n",
+"disp(+'meter',t,'Thicknesss of half wave plate =');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"u0=1.5442;//given u0\n",
+"ue=1.5533;//given ue\n",
+"lamda=5*1e-5;//wavelrngth in cm\n",
+"t=lamda/(2*(ue-u0));//Thicknesss of half wave plate\n",
+"disp(+'cm',t,'Thicknesss of half wave plate =')\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"u0=1.658;//given u0\n",
+"ue=1.486;//given ue\n",
+"lamda=5893*1e-8 //in cm\n",
+"t=lamda/(4*(u0-ue));//Thicknesss of quarter wave plate \n",
+"disp(+'cm',t,'Thicknesss of quarter wave plate =')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/6-Lasers.ipynb b/Engineering_Physics_by_K_Rajagopal/6-Lasers.ipynb
new file mode 100644
index 0000000..dc9efae
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/6-Lasers.ipynb
@@ -0,0 +1,116 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Lasers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"D=4*1e8;//distance between earth and moon in m\n",
+"lemda=16000*1e-10;//wavelength in meters\n",
+"d=1e-3;//aperture in meter\n",
+"th=lemda/d;//angular speed\n",
+"disp('rad',th,'angular speed is=');\n",
+"aos=(D*th)^2;//area of spread \n",
+"disp('m^2',aos,'area of spread is=');\n",
+"//there is variation in the answer than book..checked in calculator too.."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"a1=2*1e-3;//distance from the laser\n",
+"a2=3*1e-3;//distance from the laser\n",
+"d1=2;//output beam spot diameter\n",
+"d2=4;//output beam spot diameter\n",
+"th=(a2-a1)/(2*(d2-d1));//angle of divergence\n",
+"disp('rad',th,'angle of divergence');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"D=0.1;//focal length of lens\n",
+"lemda=14400*1e-10;//wavelength in meters\n",
+"p=100*1e-3;//power of laser beam\n",
+"d=10*1e-3;//aperture in meter\n",
+"th=lemda/d;//angular speed\n",
+"disp('rad',th,'angular speed is=');\n",
+"aos=(D*th)^2;//area of spread \n",
+"disp('m^2',aos,'area of spread is=');\n",
+"I=p/aos;//'intensity\n",
+"disp('W*m^-2',I,'intensity is=');\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb b/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb
new file mode 100644
index 0000000..1aa162b
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb
@@ -0,0 +1,227 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Optical Fiber Communication"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"NA = 0.24;//Numerical Aperture\n",
+"delta = 0.014;\n",
+"n1 = (NA)/sqrt(2*delta);//Refractive index of first medium \n",
+"disp('',n1,'Refractive index of first medium is ');\n",
+"n2 = n1 - (delta*n1);//Refractive index of secong material\n",
+"disp('',n2,'Refractive index of secong material is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n1 = 1.49; // Refractive index of first medium\n",
+"n2 = 1.44; // Refractive index of second medium\n",
+"delta = (n1-n2)/n1; // Index difference\n",
+"NA = n1* sqrt(2*delta);\n",
+"disp('',NA,'Numerical Aperture of fiber is');\n",
+"thetaa = asind(NA);\n",
+"disp('degree',thetaa,'Acceptance angle is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"NA = 0.15 ; // Numerical Aperture of fiber\n",
+"n2 = 1.55; // Refractive index of cladding\n",
+"n0w = 1.33; // Refractive index of water\n",
+"n0a = 1; // Refractive index of air\n",
+"n1 = sqrt(NA^2 + n2^2);\n",
+"NAW = (sqrt(n1^2 -n2^2))/n0w;\n",
+"thetaa = asind(NAW);//Acceptance angle in water\n",
+"disp('degree',thetaa,'Acceptance angle in water is '); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 16; // Length of optical fiber in Km\n",
+"Pi = 240e-6; // Mean optical length launched in optical fiber in Watts\n",
+"Po = 6e-6; // Mean optical power at the output in watts\n",
+"alpha = 10*log10(Pi/Po);//Signal attenuation in fiber\n",
+"disp('dB',alpha,'Signal attenuation in fiber')\n",
+"alpha1 = alpha/l;//Signal attenuation per km of the fiber\n",
+"disp('dB/km',alpha1,'Signal attenuation per km of the fiber');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Tf = 1400; // Fictive temperature of silicon in Kelvin\n",
+"betai = 7e-11; // Isothermal compressibility square meter per newton\n",
+"n = 1.46; // Refractive index of silicon\n",
+"p = 0.286; // Photoelastic constant of silicon\n",
+"lambda = 0.63e-6 // Wavelength in micrometer\n",
+"kb = 1.38e-23 // Boltzmann constant in joule per kelvin\n",
+"L = 1e3;\n",
+"alphas = (8 * %pi^3 * n^8 * p^2 * kb * Tf * betai)/(3 * lambda^4);//Rayleigh scattering coefficient\n",
+"alphars = exp(-alphas * L);//Loss factor\n",
+"disp('meter^-1',alphas,'Rayleigh scattering coefficient is ');\n",
+"disp('',alphars,'Loss factor is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"alpha = 0.5; // Attenuation of single mode optical fibre in dB per km\n",
+"lambda = 1.4; // Operating wavelength of optical fiber in micrometer\n",
+"d = 8 // Diameter of fiber in micrometer\n",
+"y = 0.6; // Laser source frequency width\n",
+"pb = 4.4e-3 * d^2 * lambda^2 * alpha * y;//Threshold optical power in SBS\n",
+"prs = 5.9e-2 * d^2 * lambda * alpha;//Threshold optical power in SRS\n",
+"disp('W',pb,'Threshold optical power in SBS');\n",
+"disp('W',prs,'Threshold optical power in SRS');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n1 = 1.50; // Refreactive index of forst medium\n",
+"delta = 0.003; // Index difference\n",
+"lambda = 1.6*1e-6; // Operating wavelength of fober in meter\n",
+"x=2*delta*n1*n1\n",
+"n2 = sqrt(n1^2-x);//refractive index of cladding\n",
+"disp(n2,'refractive index of cladding');\n",
+"rc = (3*n1^2*lambda)/(4*%pi*sqrt(n1^2 - n2^2)^3);//The critical radius of curvature for which bending losses occur \n",
+"disp('meter',rc,'The critical radius of curvature for which bending losses occur is ');\n",
+"//there is variation in answer than book .. book's answer is wright but in scilab it is not coming..(scilab mistake)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb
new file mode 100644
index 0000000..739d48f
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb
@@ -0,0 +1,177 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Conducting Materials "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n = 5.8*1e28; // Electrons density in electrons per cube meter\n",
+"rho = 1.58*1e-8; //Resistivity of wire in ohm meter\n",
+"m = 9.1*1e-31; // Mass of electron \n",
+"e = 1.6*1e-19; // Charge of electron in coloumb\n",
+"E = 1e2; // Electric field\n",
+"t = m/(rho*n*e^2);\n",
+"u = (e*t)/m;\n",
+"v = u*E; \n",
+"disp('s',t,'The relaxation time is ');\n",
+"disp('m^2/volt sec',u,'The mobility of electrons ');\n",
+"disp('m/s',v,'The average drift velocity for an electric field of 1V/cm is ');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e = 1.6*1e-19; // Charge on electron in coulumb\n",
+"m = 9.1*1e-31; // Mass of electron in kg \n",
+"rho = 1.54*1e-8; //Resistivity of material at room temperature in ohm . meter\n",
+"n = 5.8*1e28; // Number of electrons per cubic meter\n",
+"Ef = 5.5; // The fermi energy of the conductor in eV\n",
+"vf = sqrt((2*Ef*e)/m);\n",
+"t = (m/(n*e^2*rho));\n",
+"MFP = vf*t;\n",
+"disp('m/s',vf,'Velocity of electron is');\n",
+"disp('m',MFP,'Mean free path of electron is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m = 9.1*1e-31; //Mass of electron in kg\n",
+"e = 1.6*1e-19; // Charge on electron in coulumb\n",
+"t = 3*1e-14; // Relaxation time in seconds\n",
+"n = 5.8*1e28; //Number of electrons in cubic meter\n",
+"rho =m/(n*t*e*e);//The resistivity of metal \n",
+"u = 1/(n*e*rho);//The mobility of electron \n",
+"disp('Ohm.meter',rho,'The resistivity of metal is');\n",
+"disp('sqaure meter per volt.second',u,'The mobility of electron is'); \n",
+"//slight variation in ans than book.. checked in calculator also(Mistake in textbook)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e = 1.6*1e-19; // Charge of electrons in coloumbs\n",
+"m = 9.1*1e-31; // Mass of electrons in Kg\n",
+"Ef = 7*e ; //Fermi energy in electrons volt\n",
+"t = 3*1e-14; // Relaxation time in seconds\n",
+"vf = sqrt(Ef*2/m);\n",
+"lambda = vf*t;//The mean free path of electrons \n",
+"disp('Meters',lambda,'The mean free path of electrons is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"rhoC = 1.65*1e-8; // Electrical resistivity of cpooer in ohm meter\n",
+"rhoN = 14*1e-8; // Electrical resistivity of Nickel in ohm meter\n",
+"T = 300; // Room temperature in kelvin\n",
+"KCu =(2.45*1e-8*T)/rhoC;//Thermal conductivity of Cu\n",
+"KNi =2.45*1e-8*T/rhoN;//Thermal conductivity of Ni\n",
+"disp('W/(m*degree)',KCu,'Thermal conductivity of Cu is ');\n",
+"disp('W/(m*degree)',KNi,'Thermal conductivity of Ni is ');\n",
+"//slight variation in ans than book.. checked in calculator also(Mistake in Textbbok)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_K_Rajagopal/9-Quantum_Physics.ipynb b/Engineering_Physics_by_K_Rajagopal/9-Quantum_Physics.ipynb
new file mode 100644
index 0000000..e708db8
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/9-Quantum_Physics.ipynb
@@ -0,0 +1,484 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Quantum Physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"lemda=0.022*1e-10;//wavelength in meters\n",
+"th=45;//angle in degree\n",
+"m=9.1*1e-31;\n",
+"c=3*1e8;//velocity of light in free space\n",
+"h=6.62*1e-34;//plank's constant\n",
+"x=cos(th);\n",
+"disp(x);\n",
+"dlemda=h*(1-cos(th))/(m*c);//delta lemda \n",
+"disp('m',dlemda,'delta lemda is=');\n",
+"//lemda-lemda1=dlemda s0.. lemda1=lemda-dlemda\n",
+"lemda1=lemda-dlemda;//wavelength of incident X-rays\n",
+"disp('m',lemda1,'wavelength of incident X-rays');\n",
+"//there is variation in the answer than book.. checked in calculator too..(mistake of book)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11: example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"a = 1e-10 // Width of box in meter\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in Js\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"n = 1; // Single electron\n",
+"E = (n^2 * h^2)/(8*m*a^2*1.6e-19);\n",
+"disp('eV',E,'Energy of electron n^2*');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.12: example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"a = 1e-10 // Width of box in meter\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in Js\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"n = 1; // Single electron\n",
+"E = (h^2)/(8*m*a^2);//Energy of in lower level\n",
+"p = h/(2*a);//Momentum \n",
+"disp('J',E,'Energy of in lower level');\n",
+"disp('(kg.m)/s',p,'Momentum is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.13: example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"a = 0.2e-9 // Width of box in meter\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in Js\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"E5 = 230*1.6e-19 // Energy of a particle in Volts in 5th antinode\n",
+"n = 5;\n",
+"E1 = E5/(n^2);\n",
+"m = (h^2)/(8*E1*a^2);//Mass of electron \n",
+"disp('kg',m,'Mass of electron is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n = 1; // Single particle\n",
+"a = 50e-10; // Width of box in meter\n",
+"deltax = 10e-10; // Intervel between particle\n",
+"p = (2/a)*deltax;//The probability of finding the particle\n",
+"disp('',p,'The probability of finding the particle is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.15: example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"h = 6.62*1e-34; // Planck's constant\n",
+"m = 1e-9; // Mass of particle in kg\n",
+"t = 100; //Time reqired by the particle to cross 1 mm distance\n",
+"a = 1e-3 ; // Width of box in m\n",
+"v = 1e-5; // Velocity of particle in m/s\n",
+"E = (0.5*m*v^2);\n",
+"n = sqrt(8*m*a^2*E/(h^2));//The quantum state\n",
+"disp('',n,'The quantum state is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.16: example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"h = 6.62e-34; // Planck's constant in J.s\n",
+"m = 9.1e-31 // Mass of electron in kg\n",
+"nk =1;\n",
+"nl = 1;\n",
+"nm = 1;\n",
+"a = 0.5e-10 // Width of cubical box in meter\n",
+"E = (h^2*(nk^2+nl^2+nm^2))/(8*m*a^2*1.6e-19);//The lowest energy level will have energy\n",
+"disp('eV',E,'The lowest energy level will have energy ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e = 1.6e-19; // Charge of electron in Coloumb\n",
+"lambda = 2e-10; // Wavelength of a photon in meters\n",
+"h = 6.62e-34; // Planc's constant in Joule second\n",
+"c = 3e8; // Velocity og light in air in meter per second\n",
+"E = (h*c)/(lambda*e);//Thermal conductivity of Ni\n",
+"p = h/lambda;//The momentum of photon \n",
+"disp('eV',E,'The energy of photon is ');\n",
+"disp('(kg.m)/s',p,'The momentum of photon is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"h = 6.62e-34; // Planck's constant J.s\n",
+"v = 440e3; // Operating frequency of radio in Hertz\n",
+"P = 20e3 ; // Power of radio transmitter in Watts\n",
+"n = P/(h*v);// Let n be the number of photons emitted per second\n",
+"disp('',n,'Number of photon emitted per second is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"h = 6.62e-34; // Planck's constant in J.s\n",
+"c = 3e8; // Velocity of ligth in air\n",
+"t = 18000; // Time of glow - (5*3600) in seconds\n",
+"P = 30 //Power in watts\n",
+"lambda = 5893e-10; // Wavelength of emitted ligth in meters\n",
+"E = (h*c)/lambda; // Energy of a photon\n",
+"n = (P*t)/E; // let n be the number of photons emitted in 5 hours\n",
+"disp('',n,'Number of photons emitted in 5 hours is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"h = 6.62*1e-34; // Plancl's constant in J.s\n",
+"c = 3*1e8; // Velocity of light in vacccum in m/s \n",
+"m = 9.1*1e-31; // Mass of electron in Kg\n",
+"lambda = 0.7078*1e-10 // Wavelength in meter\n",
+"theta = 90;\n",
+"delta = (h*(1-cosd(theta))/(m*c));\n",
+"Nlambda = lambda + delta;\n",
+"disp('meter',Nlambda,'The wavelength of scattered X-rays is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in J.s\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"lambda = 1.8e18; // Frequency of the incident rays\n",
+"theta = 180;//angle in degree\n",
+"lambda = c/lambda;\n",
+"delta = (h*(1-cosd(theta)))/(m*c);\n",
+"Nlambda = lambda+delta;//'Wavelength of scattered X-rays\n",
+"disp('meter',Nlambda,'Wavelength of scattered X-rays is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in Js\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"lambda = 1.12e-10; // Wavelength of light in meters\n",
+"theta = 90;\n",
+"delta = (h*(1-cosd(theta)))/(m*c);\n",
+"Nlambda = lambda + delta;//The wavelength of scattered X-rays \n",
+"E = (h*c)*((1/lambda)-(1/Nlambda)) ;//Energy of electron\n",
+"disp('meters',Nlambda,'The wavelength of scattered X-rays is');\n",
+"disp('J',E,'Energy of electron is ');\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in Js\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"lambda = 0.03e-10; // Wavelength of light in meters\n",
+"theta = 60;//angle in degree\n",
+"delta = (h*(1-cosd(theta)))/(m*c);\n",
+"Nlambda = lambda + delta;\n",
+"E = ((h*c)*((1/lambda)-(1/Nlambda)))/1.6e-19 ;//Energy of recoiling electron\n",
+"disp('eV',E,'Energy of recoiling electron is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in Js\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"lambda = 0.5e-10; // Wavelength of light in meters\n",
+"theta = 90;\n",
+"delta = (h*(1-cosd(theta)))/(m*c);\n",
+"Nlambda = lambda + delta;\n",
+"E = (h*c)*((1/lambda)-(1/Nlambda)) ;\n",
+"disp('J',E,'Energy of electron is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m = 9.1e-31; // Mass of electron in kg\n",
+"h = 6.62e-34; // Planck's constant in Js\n",
+"c = 3e8; // Velocity of light in vaccum\n",
+"lambda = 1.5e-10; // Wavelength of light in meters\n",
+"E = 0.5e-16; // Energy of electron in J \n",
+"Nlambda = ((h*c)/lambda)-E;//'Energy of scattered electron\n",
+"disp('J',Nlambda,'Energy of scattered electron is ');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}