diff options
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal')
14 files changed, 3500 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb b/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb new file mode 100644 index 0000000..5404944 --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb @@ -0,0 +1,506 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Elasticity" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"n = 2.8e10; // Rigidity modulus in Newton per meter suquare\n", +"theta = 90; // In degress\n", +"theta1 = theta*(%pi/180); // in radians\n", +"l = 2; //Length of wire in meter\n", +"r = 0.5e-3; // Radius of wire in meter\n", +" t = (%pi^2 * n *r^4)/(4*l);\n", +" disp('Nm',t,'Torque is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 50*1e-2; // length of wire in m\n", +"a = 2e-3; // radius of wire in m\n", +"theta = 45; // In degree\n", +"theta1 = theta*(%pi/180); // In radian\n", +"n = 8*1e8 //Rigidity modulus in Newton per meter square\n", +"t = (0.5*%pi*n*a^4*theta1^2)/(2*l);\n", +"disp('J',t,'Torque is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 1; // Length of wire in m\n", +"a = 2e-3; // Radius of wire in m\n", +"theta = %pi/2; // in radians\n", +"theta1=theta*(180/%pi);//in degrees\n", +"n = 5e10; // Rigidity modulus of wire in newton per square meter\n", +"t = (%pi*n*a^4*theta)/(2*l); \n", +"disp('Nm',t,'Torsional couple is ');\n", +"y=a*theta1/(2*l);//angle of shear at surface\n", +"disp('degree',y,'angle of shear at surface');\n", +"z=y/2;//angle of shear at midway\n", +"disp('degree',z,'angle of shear at midway');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.13: example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//t=(pi*n*((2*a)^4)*theta)/(2*2*l)=(pi*n*((4*a)^4)*theta1)/(2*4*l)\n", +"//by solving this we get : theta/theta1 = 256/16\n", +"theta = 90; //theta\n", +"theta1= 256/16;//theta/theta'\n", +"theta2=theta/theta1;//theta'\n", +"disp(+'degree',theta2,'The twist on the longer cylinder =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.14: example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 0.5; // Length of wire in meter\n", +"a = 2e-3; // Radius pf wire in meter\n", +"theta = 30; // In degree\n", +"Ashear = (a*theta)/l;//Angle of shear\n", +"disp('degree',Ashear,'Angle of shear is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.15: example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e = 1e-2; // Restoring couple per unit twist in Newton meter\n", +"a = 6e-2; // Radius of cyinder in meter\n", +"a1 = 0.10 // Internel diameter of hollow cylinder in meters\n", +"a2 = sqrt(a^2 + a1^2); // Externel Diameter in meter\n", +"disp(a2);\n", +"c = (e * (a2^2 - a1^2))/(a^4);//Restoring couple per unit twist for hollow cylinder\n", +"disp('Nm',c,'Restoring couple per unit twist for hollow cylinder is ');\n", +"//There is slight variation in answer than book's answer..verified in calculator too" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.16: example_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 0.80; // Distance between the knife edges in meter\n", +"r = 0.75e-2; // Radius of rod in meter\n", +"m = 800e-3; // Mass of load in Kilogram\n", +"dp = 0.030e-2; // depression on meter\n", +"g = 9.8; // Gravity constant\n", +"Y = (m*g*l^3)/(12*dp*%pi*r^4);\n", +"disp('N/m^2',Y,'Youngs modulus of the material is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.17: example_17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 1; // Length of beam in meter\n", +"dp = 10e-3; // Depression in meter\n", +"x = 0.4 // Distance at which depression is to be found in meter\n", +"dpx = (dp*3*(x-x^2+x^3))/l^3;\n", +"disp('m',dpx,'Depression at x = 0.4m is ');\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.18: example_18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"dp = 12e-3; // Depression for a cantilever os another cantilever of some material of length, width of thickness three times the first case\n", +"//delta=4mgl^3/ybd^3 here replace l=3l b=3b and d=3d so..\n", +"dpd = dp/3;\n", +"disp('m',dpd,'The depression in second cantilever is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Y = 2e12 // Youngs modulus of steel in dynes per cm square \n", +"g = 981; // Gravity Constant in am per second square\n", +"l = 400; // Length of wire in cm\n", +"r = 0.1; // Radius of wire in cm\n", +"deltaL = 0.1; // Change in length of wire in cm\n", +"M = (Y * %pi * r^2 * deltaL )/(g*l*1000);\n", +"disp('kg',M,'The mass to be added is',);\n", +"//There is slight variation in answer than book's answer..verified in calculator too" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc; \n", +"clear all;\n", +"r = 0.15; // Radius of wire in cm\n", +"A = %pi* r^2; // Area of wirw in cm square\n", +"F = 200; // Force in dyne\n", +"Y = 12.5e11; // Young's modulus in dyne per cm square\n", +"t = ((F*9.8e5)/(A*Y))*100;\n", +"disp('%',t,'Percentage of increase is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"lss = 5; // Length of steel wire in m \n", +"as = 4e-5; // Cross section area of steel wire in square meters\n", +"lc = 6; // Length of copper wire in m\n", +"ac = 5e-5; // Cross section area of copper wire in square meters\n", +"Ratio = (lss/as)*(ac/lc); // Ratio os youngs modulus of steel to copperAfter eliminating force and delta change\n", +"disp(Ratio,'The ratio of youngs modulus of steel to copper is '); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"change = 0.01/100;\n", +"h = 1e5; // Height\n", +"rho = 1 // Density of water in gm per cm square\n", +"g = 980 // Gravity constant in am per square cm\n", +"deltap = h*g*rho;\n", +"k = deltap/change;\n", +"disp('dyne cm^-2',k,'Bulk modulus of sphere is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"deltav = 0.5; // change in volume\n", +"v = 200; // initial volume in litres\n", +"deltap = 100*1.013e5 // change in pressure in Pa\n", +"k = (deltap/(deltav/v));\n", +"disp('Pa',k,'Bulk modulus of liquid is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 0.4 // Length in meter\n", +"A = 240e-4 // Area of slab in meter square\n", +"F = 1e5 // Shaering force in newton\n", +"n = 5.6e9 // Shear modulus in pa\n", +"deltal = (F*l)/(n*A);\n", +"disp('m',deltal,'The displacement is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 7; // Length of rubber cube\n", +"n = 2e7; // Rigidity modulus in dyne per cm square\n", +"F = 200*1000*981; // Force in dyne\n", +"A = 49; // Area in cm square\n", +"theta = (F/(A*n));\n", +"disp('rad',theta,'Shearing stress is ' ) ;\n", +"deltal = l*theta;\n", +"disp('cm',deltal, 'Change is' );" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"A = 2e-4; // Area of steel wire in meter square\n", +"Y = 2e11 // Young's modulus in Newton per meter square\n", +"F = A*Y //l = L in this problem hence eliminating and rearranging equation of Y\n", +"disp('N',F,'The value of force is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"sigma = 0.2; // Poisson's ratio\n", +"changel = 2e-3; // longitudinal strain\n", +"changev = (changel-(2*sigma*changel))*100;\n", +"disp('%',changev,'Percentage change in volume is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb b/Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb new file mode 100644 index 0000000..cd45c1c --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb @@ -0,0 +1,134 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Energy Bands in Solids" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//E=Ef+1% of Ef\n", +"k=1.38*1e-23;//boltzman constant\n", +"e=1.6*1e-19;//charge of electron\n", +"E=0.0555;\n", +"//0.1=1/[(exp((E*e)/(k*T)))+1]\n", +"T=E*e/(k*log(9));//Temprature\n", +"disp(+'kelvin',T,'Temprature = ');\n", +"//there is slight variation than book's answer.. checked in calculator also.(book's mistake)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"sx=0.01 //in ev. where x=E-Ef\n", +"x1=sx*1.6*1e-19 //converting it in joule\n", +"T=200 //in kelvin\n", +"Fe=1/(1+exp(x1/(1.38*1e-23*T)));//The value of F(E) \n", +"disp(Fe,'The value of F(E) =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"density=7.13*1e3 //in kg/m^3\n", +"M=65.4\n", +"N=6.023*1e26 //avogedro number\n", +"n=(2*density*N)/M\n", +"n1=n^(2/3);\n", +"Ef=3.65*1e-19*n1; //in eV\n", +"Ef1=(3/5)*Ef //in eV\n", +"disp(+'eV',Ef,'fermi energy =');\n", +"disp(+'eV',Ef1,'Mean energy at T=0K =');\n", +"//there is slight variation in answer than book's answer.. checked in calculator too..(book's mistake)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Ef=5.51 //in eV\n", +"E=(3/5)*Ef;//The average energy of a free electron in silver at 0k\n", +"disp(+'eV',E,'The average energy of a free electron in silver at 0k =')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/11-Semiconductors.ipynb b/Engineering_Physics_by_K_Rajagopal/11-Semiconductors.ipynb new file mode 100644 index 0000000..67c5fe1 --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/11-Semiconductors.ipynb @@ -0,0 +1,306 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.10: example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"P=8.9*1e-3;//resistivity of doped sillicon\n", +"Rh=3.6*1e-4;//hall coefficient\n", +"e=1.6*1e-19;//charge of electron\n", +"ne=3*%pi/(8*Rh*e);//carrier density of electron\n", +"disp('m^-3',ne,'carrier density of electron is=');\n", +"ue=1/(P*ne*e);//mobility of electon\n", +"disp('m^2*V^-1*s^-1',ue,'mobility of electon is=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Pi=0.47;//given resistivity of intrinsic germanium\n", +"sigmai=1/Pi;//conductance\n", +"e=1.6*1e-19;//charge of electron\n", +"ue=0.38;//electron mobility\n", +"up=0.18;//hole mobility\n", +"ni=sigmai/(e*(ue+up));//intrinsic carrier density at 300K \n", +"disp('m^-3',ni,'intrinsic carrier density at 300K temp=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e=1.6*1e-19;//charge of electron\n", +"ue=0.39;//electron mobility\n", +"up=0.19;//hole mobility\n", +"ni=2.4*1e19;//intrinsic carrier density \n", +"sigma=ni*e*(up+ue);\n", +"disp('ohm^-1*m^-1',sigma,'conductivity of intrinsic semiconductor=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m0=9.1*1e-31;\n", +"me=0.12*m0;\n", +"mp=0.28*m0;\n", +"Eg=0.67*1.6*1e-19\n", +"k=1.38*1e-23;//boltzman constant\n", +"h=6.62*1e-34;//plank's constant\n", +"T=300;\n", +"ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T));//intrinsic carrier concentration\n", +"disp('m^-3',ni,'intrinsic carrier concentration is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Eg1=0.36*1.6*1e-19;\n", +"Eg2=0.72*1.6*1e-19\n", +"k=1.38*1e-23;//boltzman constant\n", +"T=300;//tempreture in kelvin\n", +"//in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T))ratio of nip/niq is given by:\n", +"x=exp((Eg2-Eg1)/(2*k*T));//ratio of nip/niq\n", +"disp(x,'ratio of nip/niq is=');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e=1.6*1e-19;//charge of electron\n", +"ue=0.39;//electron mobility\n", +"up=0.19;//hole mobility\n", +"ni=2.5*1e19;//intrinsic carrier density \n", +"l=1e-2;//length of Ge rode\n", +"a=1e-4;//area of Ge rode\n", +"sigma=ni*e*(up+ue);//conductivity of intrinsic semiconductor\n", +"disp('ohm^-1*m^-1',sigma,'conductivity of intrinsic semiconductor=');\n", +"P=1/sigma;\n", +"R=P*l/a;//resistance of Ge rode\n", +"disp('ohm',R,'resistance of Ge rode');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"ue=3850;//mobility of electron\n", +"sigma=5;//conductivity of ntype semiconductor\n", +"e=1.6*1e-19;//charge of electron\n", +"Nd=sigma/(e*ue);//density of donor atoms\n", +"disp('cm^-3',Nd,'density of donor atoms is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"//let Ef-Ev=0.4eV=x and Ef1-Ev=y\n", +"x=0.4;//Ef-Ev in eV\n", +"k=1.38*1e-34;//boltzmann constant\n", +"T=300;//tempreture in kelvin\n", +"//now p=Nv*exp(-x/(k*T))=Na and p'=Nv*exp(-y/(k*T))=2Na so ratio of this 2 is 2=exp(x-y/(k*T))\n", +"y=x-k*T*log(2);//Ef1-Ev in eV\n", +"disp('eV',y,'Ef1-Ev in eV is=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.8: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"//let Ec1-Ef=0.3eV=x and Ec2-Ef=y\n", +"x=0.3;//Ec-Ef in eV\n", +"T1=300;//tempreture in kelvin\n", +"T2=330;//tempreture in kelvin\n", +"//Ec-Ef=k*T*log(Nc/Nd) so..\n", +"y=T2*x/T1;//Ec2-Ef in eV\n", +"disp('eV',y,'Ec2-Ef in eV is=');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.9: example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"B=0.5;//given flux density\n", +"d=3*1e-3;//given thickness\n", +"J=500;//given current density\n", +"n=1e21;//given donor density\n", +"e=1.6*1e-19;//charge of electron\n", +"Vh=(B*J*d/(n*e));//hall voltage\n", +"disp('V',Vh,'hall voltage is=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb new file mode 100644 index 0000000..c5c372e --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb @@ -0,0 +1,205 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Superconductivity" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Tc=7.26;//critical tempreture in kelvin\n", +"H0=8*1e5/(4*%pi);//magnetic field at 0K\n", +"T=5;//tempreture in kelvin\n", +"Hc=H0*(1-(T/Tc)^2);//megnrtic field at 5K\n", +"disp('A/m',Hc,'megnrtic field at 5K tempreture');\n", +"//there is variation in the answer than book.. checked in calculator too.." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Tc=0.3;//given tempareture in kelvin\n", +"thetad=300;\n", +"//part a\n", +"N0g=-1/(log(Tc/thetad));\n", +"disp(N0g,'the value of N0g is');\n", +"//part b\n", +"kB=1.38*1e-23;//boltzmann constant\n", +"Eg=3.5*kB*Tc;//energy\n", +"disp('J',Eg,'energy is=');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"H0=0.0306;//given constant characteristic of lead material\n", +"Tc=3.7;//given tempareture in kelvin\n", +"T=2;//given tempareture in kelvin\n", +"x=(T/Tc)*(T/Tc);\n", +"Hc=H0*(1-x);//value of magnetic field at 2K temp\n", +"disp('T',Hc,'value of magnetic field at 2K temp=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"HcT=2*1e5/(4*%pi);//magnetic field intensity at T K\n", +"Hc0=3*1e5/(4*%pi);//magnetic field intensity at T=0K\n", +"Tc=3.69;//given temperature in K\n", +"T=sqrt(1-(HcT/Hc0))*Tc;//tempreture in K\n", +"disp('K',T,'temperature of superconducture is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"H0=6.5*1e4;//given constant characteristic of lead material\n", +"Tc=7.18;//given temprature in kelvin\n", +"T=4.2;//given temprature in kelvin\n", +"//part a\n", +"x=(T/Tc)*(T/Tc);\n", +"Hc=H0*(1-x);//value of magnetic field at 4.2K temp\n", +"disp('A/M',Hc,'value of magnetic field at 4.2K temp=');\n", +"//part b\n", +"r=1e-3/2;//given radius\n", +"Ic=2*%pi*r*Hc;//critical current\n", +"disp('A',Ic,'critical current is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"lemdaT=750;//given penetration depth at T=3.5K\n", +"Tc=4.22;//given critical tempreture\n", +"T=3.5;////given tempareture\n", +"//part a\n", +"x=(T/Tc)^4;//temporary variable\n", +"lemda0=lemdaT/sqrt(1-x);//penetration depth at T=0K\n", +"disp('Angstrome',lemda0,'penetration depth at T=0K is=');\n", +"//part b\n", +"N=6.02*1e26;//given\n", +"alpha=13.55*1e3;//given\n", +"M=200.6;//given\n", +"n0=N*alpha/M;\n", +"disp('/m^3',n0,'molecular density=');\n", +"ns=n0*(1-(T/Tc)^4);//superconducting electron density\n", +"disp('/m^3',ns,'superconducting electron density=');\n", +"//Result printed wrong in book" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/13-Magnetic_Materials.ipynb b/Engineering_Physics_by_K_Rajagopal/13-Magnetic_Materials.ipynb new file mode 100644 index 0000000..878df75 --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/13-Magnetic_Materials.ipynb @@ -0,0 +1,167 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Magnetic Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"u0=4*%pi*1e-7;\n", +"H=1e7;//magnetic field strength\n", +"X=(-0.9)*1e-6;//magnetic suseptiblity\n", +"M=X*H;//magnetization of material\n", +"disp('A/m',M,'magnetization of material is=');\n", +"B=u0*H;//magnetic flux density\n", +"disp('Wb/m^2',B,'magnetic flux density is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"X=2*1e-3;//magnetic suseptibility of material at room temp.\n", +"H=1e3;//magnetic field intrnsity of piece of ferricoxide\n", +"u0=4*%pi*1e-7;\n", +"M=X*H;//magnetization\n", +"disp('A/m',M,'magnetization is=');\n", +"ur=X+1;//relative permiability\n", +"B=u0*ur*H;//magnetic flux density\n", +"disp('W/m^2',B,'magnetic flux density is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"M=2.74*1e8;//magnetization per atom in A/m\n", +"a=2.66*1e-10;//elementry cube edge\n", +"n=2;//Iron in BCC\n", +"B=(M*a*a*a)/2;//Am^2 per atom\n", +"disp('Am^2',B,'Am^2 per atom=');\n", +"//interms of bohr megneton\n", +"b=B/(9.27*1e-24);//dipole moment\n", +"disp('bohr megnaton/atom',b,'dipole moment is=');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"u0=4*%pi*1e-7;\n", +"b=9.27*1e-24;\n", +"H=1e3;//homogeneous field\n", +"k=1.38*1e-23;//boltzmann constant\n", +"T=303;//temp in kelvin\n", +"T1 = T - 273; // Temp In Degree\n", +"x=u0*b*H/(k*T);//avg magnetic moment\n", +"disp('bohr magneton/spin',x,'avg magnetic moment is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"ur=16;//relative permiability\n", +"I=3300;//intensity of magnetization\n", +"H=I/(ur-1);//strength of the field\n", +"disp('A/m',H,'strength of the field');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/14-Dielectrics.ipynb b/Engineering_Physics_by_K_Rajagopal/14-Dielectrics.ipynb new file mode 100644 index 0000000..6a0ee35 --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/14-Dielectrics.ipynb @@ -0,0 +1,201 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Dielectrics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"er=1.0000684;//dielectric constant of helium \n", +"N=2.7*1e25;//atoms/m^3\n", +"r=(er-1)/(4*%pi*N);\n", +"R=r^(1/3); //radius of electron cloud\n", +"disp('m',R,'radius of electron cloud is');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"k=1.38*1e-23;//boltzmann constant\n", +"N=1e27;//HCL molecule per cubic meter\n", +"E=1e6;//electric field of vapour\n", +"D=3.33*1e-30;\n", +"pHCL=1.04*D;\n", +"T=300;//tempreture in kelvin\n", +"alpha=(pHCL)^2/(3*k*T);\n", +"p0=N*alpha*E;//orientation polarization\n", +"disp('C/m^2',p0,'orientation polarization is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"alpha=0.35*1e-40;//polarizability of gas\n", +"N=2.7*1e25;\n", +"e0=8.854*1e-12;//permittivity of vacume\n", +"er=1+(N*alpha/e0);//relative permittivity\n", +"disp(er,'relative permittivity is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"er=12;//relative permittivity\n", +"N=5*1e28;//atoms/m^3\n", +"e0=8.854*1e-12;//permittivity of vacume\n", +"x=(er-1)/(er+2);\n", +"alpha=(3*e0/N)*x;//electrical polarizability\n", +"disp('F*m^2',alpha,'electrical polarizability');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"C=2.4*1e-12;//given capacitance in F\n", +"e0=8.854*1e-12;//permittivity of vacume\n", +"a=4*1e-4;//area in m^2\n", +"d=0.5*1e-2;//thickness\n", +"tandelta=0.02;\n", +"er=(C*d)/(e0*a);//relative permittivity\n", +"disp(er,'relative permittivity is=');\n", +"lf=er*tandelta;//loss factor\n", +"disp(lf,'electric loss factor is=');\n", +"delta=atan(0.02);\n", +"PA=90-delta;//phase angle\n", +"disp(PA,'phase angle is=');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"er=8;//relative permittivity\n", +"a=0.036;//area in m^2\n", +"e0=8.854*1e-12;//permittivity of vacume\n", +"C=6*1e-6;//capacitance in F\n", +"V=15;//potential difference\n", +"d=e0*er*a/C;\n", +"E=V/d;//field strength\n", +"disp('V/m',E,'field strength is=');\n", +"dpm=e0*(er-1)*E;//dipole moment/unit volume\n", +"disp('C/m^2',dpm,'dipole moment/unit volume=');\n", +"//slight variation in ans than book.. checked in calculator also(Mistake in textbook)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/2-Acoustics_Of_Buildings.ipynb b/Engineering_Physics_by_K_Rajagopal/2-Acoustics_Of_Buildings.ipynb new file mode 100644 index 0000000..300917e --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/2-Acoustics_Of_Buildings.ipynb @@ -0,0 +1,291 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Acoustics Of Buildings" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"v=45*100*17.78;//in m^3\n", +"absorp1=(700*0.03)+(600*0.06)+(400*0.025)+(600*0.3);\n", +"absorp_p=600*4.3;\n", +"T1=(0.16*v)/(absorp1);//Reverbaration time (empty hall) \n", +"T2=(0.16*v)/(absorp_p+absorp1);//Reverbaration time with full capacity\n", +"disp(+'second',T1,'Reverbaration time (empty hall) =');\n", +"disp(+'second',T2,'Reverbaration time with full capacity =');\n", +"//There is slight variation in answer than book's answer..verified in calculator too.(mistake in textbook)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//delta_L=L2-L1\n", +"//I proportional to square of amplitude so when amplitude is doubled intensity will becomes 4 times \n", +"//L1=10*l0g10(I1/I0)\n", +"//L2=10*log10(I2/I0)\n", +"//delta_L=L2-L1\n", +"//delta_L=10*log(I1/I0)-10*log(I2/I0)=10*log(I2/I1)\n", +"I21=4;//I2/I1=4 because intensity=amp^2\n", +"delta_L=10*log10(I21);//increase in intensity level\n", +"disp(+'dB',delta_L,'increase in intensity level =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//L2-L1=10*log10(I2/I1)\n", +"//so , we can write that \n", +"L2=40 //i dB\n", +"L1=10 //in dB \n", +"//where L1 and L2 are intensity level of two waves of same frequency\n", +"L=L2-L1;\n", +"//let I2/I1=I\n", +"I=10^(L/10);\n", +"//let a2/a1=a\n", +"a=sqrt(I);//Ratio of their amplitudes \n", +"disp(a,'Ratio of their amplitudes = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"I1=25.2 //in Wm^-2\n", +"I2=0.90 //in Wm^-2\n", +"B=10*log10(I1/I2) //Relative loudness of sound in dB\n", +"disp(+'dB',B,'Relative loudness of sound = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"I=1e4 //in W/(m*m)\n", +"I0=1e-12 //in W/(m*m)\n", +"B=10*log10(I/I0);//intensity level\n", +"disp(+'dB',B,'intensity level = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"B=5 // in dB\n", +"//B=10*log(I2/I1)\n", +"//let I2/I1=x\n", +"//10*log(x)=5\n", +"x=10^(5/10);\n", +"disp('times more intense than the unamplified sound',x,'Amplified sound is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"d=198; //in meter\n", +"t=1.2;//in second\n", +"//velocity=distance/time\n", +"v=2*d/t;//velocity\n", +"disp(+'m/s',v,'velocity =');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//need to find absorption coefficient\n", +"V=5600 //in m^3\n", +"T=2 //in second\n", +"s=700 //in m^2\n", +"a=0.16*V/(s*T)\n", +"disp(a,'absorption coefficient =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"absorp1=92.90; //in m^^2\n", +"absorp2=92.90;//in m^2\n", +"V=2265.6;//in m^3\n", +"T1=0.16*V/(absorp1);\n", +"T2=0.16*V/(absorp1+absorp2);\n", +"ans=T2/T1;//effect on Reverberation time\n", +"disp(+'of its original value',ans,'Reverberation time will reduced to ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"v=25.2*20.3*8.04 ;//in m^3\n", +"T=0.75; //in second\n", +"absorp1=500*0.3176 ;//in m^2\n", +"absorp2=(0.16*v)/T;\n", +"T1=(0.16*v)/(absorp1+absorp2);//reverbaration time\n", +"disp(+'second',T1,'reverbaration time =');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/3-Ultrasonics.ipynb b/Engineering_Physics_by_K_Rajagopal/3-Ultrasonics.ipynb new file mode 100644 index 0000000..7881c7c --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/3-Ultrasonics.ipynb @@ -0,0 +1,135 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Ultrasonics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"t=1.6*1e-3 //thickness in meter\n", +"v=5760 //velocity in m/s\n", +"lemda=2*t//wavelength\n", +"f=v/lemda//fundamental frequency \n", +"disp(+'Hz',f,'fundamental frequency =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"t=40*1e-2;\n", +"//pulse covers 2x distance in arriving back\n", +"//so, 30*1e-6=2*x/v\n", +"//and, 2nd pulse will cover a distance of 2*40 cm in 80*1e-6 seconds\n", +"//therfore, 80*1e-6=(2*40*1e-2)/v\n", +"//compare both equation\n", +"e1=30;\n", +"e2=40*2\n", +"x=e1*t*2/(2*e2);\n", +"disp(+'m',x,'distanc of the flow from near end =') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"f_diff=50*1e3 //in Hz\n", +"v=5000 //in m/s\n", +"//f1=v/2*t\n", +"//f2=2v/2t\n", +"//f2-f1=v/2t\n", +"t=v/(2*f_diff)\n", +"disp(+'meter',t,'Thickness of steel plate =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"f=1e6 //frequency in Hz\n", +"L=1 //inductance in henry\n", +"//f=(1/2*pi)*(sqrt(1/(L*C)))\n", +"c=1/(4*%pi^2*f^2*L);//capacitance\n", +"disp(+'F',c,'capacitance =')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/4-Crystal_Physics.ipynb b/Engineering_Physics_by_K_Rajagopal/4-Crystal_Physics.ipynb new file mode 100644 index 0000000..7ed37a5 --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/4-Crystal_Physics.ipynb @@ -0,0 +1,325 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Crystal Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//let three intercepts are I1,I2,I3\n", +"I1=0.96;\n", +"I2=0.64;\n", +"I3=0.48;\n", +"//as they are ratios we will multiply by some some constants so that it will become integers\n", +"I1=6;\n", +"I2=4;\n", +"I3=3 ;\n", +"//let their reciprocals are I1_1,I2_1,I3_1\n", +"I1_1=1/I1;\n", +"I2_1=1/I2;\n", +"I3_1=1/I3;\n", +"//LCM of I1_1,I2_1,I3_1 are 12. \n", +"//By multiply LCM with I1_!,I2_1,I3_1 we will get miller indices\n", +"LCM=12;\n", +"M_1=LCM*I1_1;\n", +"M_2=LCM*I2_1 ;\n", +"M_3=LCM*I3_1;\n", +"disp(M_1,'Miller indices of plane =');\n", +"disp(M_2);\n", +"disp(M_3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"r=1.278*1e-8 ;//atomic radius in cm\n", +"M=63.5; //atomic weight\n", +"N=6.023*1e23; //avogadro number\n", +"n=4//for fcc n=4\n", +"a=4*r/(sqrt(2));\n", +"density=n*M/(N*a^3);//Density of copper\n", +"disp(+'g/cc',density,'Density of copper =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"M=58.45;//atomic mass\n", +"N=6.02*1e23;//avogadro number\n", +"density=2.17*1e3 ; //in kg/m^3\n", +"n=4 //Nacl is FCC\n", +"a=(n*M/(N*density))^(1/3);//lattice constant\n", +"disp(+'m',a,'lattice constant = ');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//let three intercepts are I1,I2,I3\n", +"I1=3;\n", +"I2=-2;\n", +"I3=3/2;\n", +"//let their reciprocals are I1_1,I2_1,I3_1\n", +"I1_1=1/I1;\n", +"I2_1=1/I2;\n", +"I3_1=1/I3;\n", +"//LCM of I1_1,I2_1,I3_1 are 6 . \n", +"//By multiply LCM with I1_!,I2_1,I3_1 we will get miller indices\n", +"LCM=6;\n", +"M_1=LCM*I1_1;\n", +"M_2=LCM*I2_1 ;\n", +"M_3=LCM*I3_1;\n", +"disp(M_1,'Miller indices of plane =');\n", +"disp(M_2);\n", +"disp(M_3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"r=1.246 //in A\n", +"a=4*r/sqrt(2)\n", +"d_200=3.52/sqrt(4+0+0)\n", +"disp(+'m',d_200*1e-10,'d200 = ')\n", +"d_220=3.52/sqrt(4+4)\n", +"disp(+'m',d_220*1e-10,'d220 = ')\n", +"d_111=3.52/sqrt(1+1+1)\n", +"disp(+'m',d_111*1e-10,'d111 = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"h=1\n", +"k=1\n", +"l=1\n", +"h1=1\n", +"k1=1\n", +"l1=1\n", +"a=((h*h1)-(k*k1)+(l*l1))/(sqrt((h*h)+(k*k)+(l*l))*sqrt((h1*h1)+(k1*k1)+(l1*l1)));\n", +"//cosine angle=a so angle=cosine inverse of a\n", +"thita=acosd(a);//angle between two planes\n", +"disp(+'degree',thita,'angle between two planes =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"a=2.9*1e-8; //in cm\n", +"M=55.85;//atomic mass\n", +"density=7.87 //in g/cc\n", +"N=6.023*1e23;\n", +"n=(a^3*N*density)/M;//Number of atoms per unit cell\n", +"disp(n,'Number of atoms per unit cell =');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"M=55.85;//atomic mass\n", +"d=7.86 //density of iron in g/cc\n", +"N=6.023*1e23\n", +"n=2//BCC structure\n", +"a=((n*M)/(N*d))^(1/3);\n", +"r=(sqrt(3)*a)/4;//radius of iron atom \n", +"disp(+'cm',r,'radius of iron atom =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"M=207.21;//atomic mass\n", +"d=11.34*1e3 //in kg/m^3\n", +"N=6.023*1e26 //in kg/m^3\n", +"n=4;//for FCC\n", +"a=((n*M)/(N*d))^(1/3);//lattice constant\n", +"r=(sqrt(2)*a)/4;//Atomic radius\n", +"disp(+'m',a,'lattice constant =');\n", +"disp(+'m',r,'Atomic radius =');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"n=1;\n", +"thita=30;//angle in degree\n", +"lamda=1.75; //in A\n", +"h=1;\n", +"k=1;\n", +"l=1;\n", +"//d111=a/sqrt((h*h)+(k*k)+(l*l))\n", +"//2dsin(thita)=n*lamda\n", +"d=n*lamda/(2*sind(thita));\n", +"a=sqrt(3)*d;//lattice constant \n", +"disp(+'meters',a*1e-10,'lattice constant =')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/5-Wave_Optics.ipynb b/Engineering_Physics_by_K_Rajagopal/5-Wave_Optics.ipynb new file mode 100644 index 0000000..69d872e --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/5-Wave_Optics.ipynb @@ -0,0 +1,226 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Wave Optics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"refractive_index=1.65 //refractive index\n", +"lamda=5893*1e-10;//wavelength\n", +"n=400;\n", +"t=n*lamda/(2*(refractive_index-1));//Thickness of film\n", +"disp(+'meter',t,'Thickness of film = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"x=0.40*1e-3; //in meter\n", +"n=900;\n", +"lamda=2*x/n;//Wavelength of light in meters\n", +"lamda1=lamda/1e-10;//Wavelength of light in A\n", +"disp(+'Angstorm',lamda1,'Wavelength of light in A =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"lamda=5893*1e-10;//wavelength of monocromatic light\n", +"n=4000;\n", +"x=n*lamda/2;//distance moved by mirror M1\n", +"disp(+'meter',x,'distance moved by mirror M1 =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"lamda=5461*1e-10;//wavelength of light\n", +"n=8;//no of frings\n", +"t=6*1e-6;//in meter\n", +"u=((n*lamda)/(2*t))+1;//refractive index of material\n", +"disp(u,'refractive index of material =');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"ue=1.553;//given ue\n", +"u0=1.544;//given uo\n", +"lamda=500*1e-9;//in meter\n", +"t=lamda/(4*(ue-u0));//The thickness of quarter wave plate\n", +"disp(+'meter',t,'The thickness of quarter wave plate =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"lamda=5893*1e-10;//in meter\n", +"ue=1.55333;//given ue\n", +"u0=1.5442;//given u0\n", +"t=lamda/(2*(ue-u0));//Thicknesss of half wave plate\n", +"disp(+'meter',t,'Thicknesss of half wave plate =');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"u0=1.5442;//given u0\n", +"ue=1.5533;//given ue\n", +"lamda=5*1e-5;//wavelrngth in cm\n", +"t=lamda/(2*(ue-u0));//Thicknesss of half wave plate\n", +"disp(+'cm',t,'Thicknesss of half wave plate =')\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"u0=1.658;//given u0\n", +"ue=1.486;//given ue\n", +"lamda=5893*1e-8 //in cm\n", +"t=lamda/(4*(u0-ue));//Thicknesss of quarter wave plate \n", +"disp(+'cm',t,'Thicknesss of quarter wave plate =')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/6-Lasers.ipynb b/Engineering_Physics_by_K_Rajagopal/6-Lasers.ipynb new file mode 100644 index 0000000..dc9efae --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/6-Lasers.ipynb @@ -0,0 +1,116 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Lasers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"D=4*1e8;//distance between earth and moon in m\n", +"lemda=16000*1e-10;//wavelength in meters\n", +"d=1e-3;//aperture in meter\n", +"th=lemda/d;//angular speed\n", +"disp('rad',th,'angular speed is=');\n", +"aos=(D*th)^2;//area of spread \n", +"disp('m^2',aos,'area of spread is=');\n", +"//there is variation in the answer than book..checked in calculator too.." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"a1=2*1e-3;//distance from the laser\n", +"a2=3*1e-3;//distance from the laser\n", +"d1=2;//output beam spot diameter\n", +"d2=4;//output beam spot diameter\n", +"th=(a2-a1)/(2*(d2-d1));//angle of divergence\n", +"disp('rad',th,'angle of divergence');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"D=0.1;//focal length of lens\n", +"lemda=14400*1e-10;//wavelength in meters\n", +"p=100*1e-3;//power of laser beam\n", +"d=10*1e-3;//aperture in meter\n", +"th=lemda/d;//angular speed\n", +"disp('rad',th,'angular speed is=');\n", +"aos=(D*th)^2;//area of spread \n", +"disp('m^2',aos,'area of spread is=');\n", +"I=p/aos;//'intensity\n", +"disp('W*m^-2',I,'intensity is=');\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb b/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb new file mode 100644 index 0000000..1aa162b --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb @@ -0,0 +1,227 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Optical Fiber Communication" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"NA = 0.24;//Numerical Aperture\n", +"delta = 0.014;\n", +"n1 = (NA)/sqrt(2*delta);//Refractive index of first medium \n", +"disp('',n1,'Refractive index of first medium is ');\n", +"n2 = n1 - (delta*n1);//Refractive index of secong material\n", +"disp('',n2,'Refractive index of secong material is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"n1 = 1.49; // Refractive index of first medium\n", +"n2 = 1.44; // Refractive index of second medium\n", +"delta = (n1-n2)/n1; // Index difference\n", +"NA = n1* sqrt(2*delta);\n", +"disp('',NA,'Numerical Aperture of fiber is');\n", +"thetaa = asind(NA);\n", +"disp('degree',thetaa,'Acceptance angle is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"NA = 0.15 ; // Numerical Aperture of fiber\n", +"n2 = 1.55; // Refractive index of cladding\n", +"n0w = 1.33; // Refractive index of water\n", +"n0a = 1; // Refractive index of air\n", +"n1 = sqrt(NA^2 + n2^2);\n", +"NAW = (sqrt(n1^2 -n2^2))/n0w;\n", +"thetaa = asind(NAW);//Acceptance angle in water\n", +"disp('degree',thetaa,'Acceptance angle in water is '); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"l = 16; // Length of optical fiber in Km\n", +"Pi = 240e-6; // Mean optical length launched in optical fiber in Watts\n", +"Po = 6e-6; // Mean optical power at the output in watts\n", +"alpha = 10*log10(Pi/Po);//Signal attenuation in fiber\n", +"disp('dB',alpha,'Signal attenuation in fiber')\n", +"alpha1 = alpha/l;//Signal attenuation per km of the fiber\n", +"disp('dB/km',alpha1,'Signal attenuation per km of the fiber');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Tf = 1400; // Fictive temperature of silicon in Kelvin\n", +"betai = 7e-11; // Isothermal compressibility square meter per newton\n", +"n = 1.46; // Refractive index of silicon\n", +"p = 0.286; // Photoelastic constant of silicon\n", +"lambda = 0.63e-6 // Wavelength in micrometer\n", +"kb = 1.38e-23 // Boltzmann constant in joule per kelvin\n", +"L = 1e3;\n", +"alphas = (8 * %pi^3 * n^8 * p^2 * kb * Tf * betai)/(3 * lambda^4);//Rayleigh scattering coefficient\n", +"alphars = exp(-alphas * L);//Loss factor\n", +"disp('meter^-1',alphas,'Rayleigh scattering coefficient is ');\n", +"disp('',alphars,'Loss factor is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"alpha = 0.5; // Attenuation of single mode optical fibre in dB per km\n", +"lambda = 1.4; // Operating wavelength of optical fiber in micrometer\n", +"d = 8 // Diameter of fiber in micrometer\n", +"y = 0.6; // Laser source frequency width\n", +"pb = 4.4e-3 * d^2 * lambda^2 * alpha * y;//Threshold optical power in SBS\n", +"prs = 5.9e-2 * d^2 * lambda * alpha;//Threshold optical power in SRS\n", +"disp('W',pb,'Threshold optical power in SBS');\n", +"disp('W',prs,'Threshold optical power in SRS');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"n1 = 1.50; // Refreactive index of forst medium\n", +"delta = 0.003; // Index difference\n", +"lambda = 1.6*1e-6; // Operating wavelength of fober in meter\n", +"x=2*delta*n1*n1\n", +"n2 = sqrt(n1^2-x);//refractive index of cladding\n", +"disp(n2,'refractive index of cladding');\n", +"rc = (3*n1^2*lambda)/(4*%pi*sqrt(n1^2 - n2^2)^3);//The critical radius of curvature for which bending losses occur \n", +"disp('meter',rc,'The critical radius of curvature for which bending losses occur is ');\n", +"//there is variation in answer than book .. book's answer is wright but in scilab it is not coming..(scilab mistake)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb new file mode 100644 index 0000000..739d48f --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb @@ -0,0 +1,177 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Conducting Materials " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"n = 5.8*1e28; // Electrons density in electrons per cube meter\n", +"rho = 1.58*1e-8; //Resistivity of wire in ohm meter\n", +"m = 9.1*1e-31; // Mass of electron \n", +"e = 1.6*1e-19; // Charge of electron in coloumb\n", +"E = 1e2; // Electric field\n", +"t = m/(rho*n*e^2);\n", +"u = (e*t)/m;\n", +"v = u*E; \n", +"disp('s',t,'The relaxation time is ');\n", +"disp('m^2/volt sec',u,'The mobility of electrons ');\n", +"disp('m/s',v,'The average drift velocity for an electric field of 1V/cm is ');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e = 1.6*1e-19; // Charge on electron in coulumb\n", +"m = 9.1*1e-31; // Mass of electron in kg \n", +"rho = 1.54*1e-8; //Resistivity of material at room temperature in ohm . meter\n", +"n = 5.8*1e28; // Number of electrons per cubic meter\n", +"Ef = 5.5; // The fermi energy of the conductor in eV\n", +"vf = sqrt((2*Ef*e)/m);\n", +"t = (m/(n*e^2*rho));\n", +"MFP = vf*t;\n", +"disp('m/s',vf,'Velocity of electron is');\n", +"disp('m',MFP,'Mean free path of electron is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m = 9.1*1e-31; //Mass of electron in kg\n", +"e = 1.6*1e-19; // Charge on electron in coulumb\n", +"t = 3*1e-14; // Relaxation time in seconds\n", +"n = 5.8*1e28; //Number of electrons in cubic meter\n", +"rho =m/(n*t*e*e);//The resistivity of metal \n", +"u = 1/(n*e*rho);//The mobility of electron \n", +"disp('Ohm.meter',rho,'The resistivity of metal is');\n", +"disp('sqaure meter per volt.second',u,'The mobility of electron is'); \n", +"//slight variation in ans than book.. checked in calculator also(Mistake in textbook)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e = 1.6*1e-19; // Charge of electrons in coloumbs\n", +"m = 9.1*1e-31; // Mass of electrons in Kg\n", +"Ef = 7*e ; //Fermi energy in electrons volt\n", +"t = 3*1e-14; // Relaxation time in seconds\n", +"vf = sqrt(Ef*2/m);\n", +"lambda = vf*t;//The mean free path of electrons \n", +"disp('Meters',lambda,'The mean free path of electrons is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"rhoC = 1.65*1e-8; // Electrical resistivity of cpooer in ohm meter\n", +"rhoN = 14*1e-8; // Electrical resistivity of Nickel in ohm meter\n", +"T = 300; // Room temperature in kelvin\n", +"KCu =(2.45*1e-8*T)/rhoC;//Thermal conductivity of Cu\n", +"KNi =2.45*1e-8*T/rhoN;//Thermal conductivity of Ni\n", +"disp('W/(m*degree)',KCu,'Thermal conductivity of Cu is ');\n", +"disp('W/(m*degree)',KNi,'Thermal conductivity of Ni is ');\n", +"//slight variation in ans than book.. checked in calculator also(Mistake in Textbbok)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_K_Rajagopal/9-Quantum_Physics.ipynb b/Engineering_Physics_by_K_Rajagopal/9-Quantum_Physics.ipynb new file mode 100644 index 0000000..e708db8 --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/9-Quantum_Physics.ipynb @@ -0,0 +1,484 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Quantum Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10: example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"lemda=0.022*1e-10;//wavelength in meters\n", +"th=45;//angle in degree\n", +"m=9.1*1e-31;\n", +"c=3*1e8;//velocity of light in free space\n", +"h=6.62*1e-34;//plank's constant\n", +"x=cos(th);\n", +"disp(x);\n", +"dlemda=h*(1-cos(th))/(m*c);//delta lemda \n", +"disp('m',dlemda,'delta lemda is=');\n", +"//lemda-lemda1=dlemda s0.. lemda1=lemda-dlemda\n", +"lemda1=lemda-dlemda;//wavelength of incident X-rays\n", +"disp('m',lemda1,'wavelength of incident X-rays');\n", +"//there is variation in the answer than book.. checked in calculator too..(mistake of book)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11: example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"a = 1e-10 // Width of box in meter\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in Js\n", +"c = 3e8; // Velocity of light in vaccum\n", +"n = 1; // Single electron\n", +"E = (n^2 * h^2)/(8*m*a^2*1.6e-19);\n", +"disp('eV',E,'Energy of electron n^2*');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.12: example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"a = 1e-10 // Width of box in meter\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in Js\n", +"c = 3e8; // Velocity of light in vaccum\n", +"n = 1; // Single electron\n", +"E = (h^2)/(8*m*a^2);//Energy of in lower level\n", +"p = h/(2*a);//Momentum \n", +"disp('J',E,'Energy of in lower level');\n", +"disp('(kg.m)/s',p,'Momentum is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.13: example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"a = 0.2e-9 // Width of box in meter\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in Js\n", +"c = 3e8; // Velocity of light in vaccum\n", +"E5 = 230*1.6e-19 // Energy of a particle in Volts in 5th antinode\n", +"n = 5;\n", +"E1 = E5/(n^2);\n", +"m = (h^2)/(8*E1*a^2);//Mass of electron \n", +"disp('kg',m,'Mass of electron is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.14: example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"n = 1; // Single particle\n", +"a = 50e-10; // Width of box in meter\n", +"deltax = 10e-10; // Intervel between particle\n", +"p = (2/a)*deltax;//The probability of finding the particle\n", +"disp('',p,'The probability of finding the particle is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.15: example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"h = 6.62*1e-34; // Planck's constant\n", +"m = 1e-9; // Mass of particle in kg\n", +"t = 100; //Time reqired by the particle to cross 1 mm distance\n", +"a = 1e-3 ; // Width of box in m\n", +"v = 1e-5; // Velocity of particle in m/s\n", +"E = (0.5*m*v^2);\n", +"n = sqrt(8*m*a^2*E/(h^2));//The quantum state\n", +"disp('',n,'The quantum state is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.16: example_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"h = 6.62e-34; // Planck's constant in J.s\n", +"m = 9.1e-31 // Mass of electron in kg\n", +"nk =1;\n", +"nl = 1;\n", +"nm = 1;\n", +"a = 0.5e-10 // Width of cubical box in meter\n", +"E = (h^2*(nk^2+nl^2+nm^2))/(8*m*a^2*1.6e-19);//The lowest energy level will have energy\n", +"disp('eV',E,'The lowest energy level will have energy ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e = 1.6e-19; // Charge of electron in Coloumb\n", +"lambda = 2e-10; // Wavelength of a photon in meters\n", +"h = 6.62e-34; // Planc's constant in Joule second\n", +"c = 3e8; // Velocity og light in air in meter per second\n", +"E = (h*c)/(lambda*e);//Thermal conductivity of Ni\n", +"p = h/lambda;//The momentum of photon \n", +"disp('eV',E,'The energy of photon is ');\n", +"disp('(kg.m)/s',p,'The momentum of photon is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"h = 6.62e-34; // Planck's constant J.s\n", +"v = 440e3; // Operating frequency of radio in Hertz\n", +"P = 20e3 ; // Power of radio transmitter in Watts\n", +"n = P/(h*v);// Let n be the number of photons emitted per second\n", +"disp('',n,'Number of photon emitted per second is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"h = 6.62e-34; // Planck's constant in J.s\n", +"c = 3e8; // Velocity of ligth in air\n", +"t = 18000; // Time of glow - (5*3600) in seconds\n", +"P = 30 //Power in watts\n", +"lambda = 5893e-10; // Wavelength of emitted ligth in meters\n", +"E = (h*c)/lambda; // Energy of a photon\n", +"n = (P*t)/E; // let n be the number of photons emitted in 5 hours\n", +"disp('',n,'Number of photons emitted in 5 hours is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"h = 6.62*1e-34; // Plancl's constant in J.s\n", +"c = 3*1e8; // Velocity of light in vacccum in m/s \n", +"m = 9.1*1e-31; // Mass of electron in Kg\n", +"lambda = 0.7078*1e-10 // Wavelength in meter\n", +"theta = 90;\n", +"delta = (h*(1-cosd(theta))/(m*c));\n", +"Nlambda = lambda + delta;\n", +"disp('meter',Nlambda,'The wavelength of scattered X-rays is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in J.s\n", +"c = 3e8; // Velocity of light in vaccum\n", +"lambda = 1.8e18; // Frequency of the incident rays\n", +"theta = 180;//angle in degree\n", +"lambda = c/lambda;\n", +"delta = (h*(1-cosd(theta)))/(m*c);\n", +"Nlambda = lambda+delta;//'Wavelength of scattered X-rays\n", +"disp('meter',Nlambda,'Wavelength of scattered X-rays is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in Js\n", +"c = 3e8; // Velocity of light in vaccum\n", +"lambda = 1.12e-10; // Wavelength of light in meters\n", +"theta = 90;\n", +"delta = (h*(1-cosd(theta)))/(m*c);\n", +"Nlambda = lambda + delta;//The wavelength of scattered X-rays \n", +"E = (h*c)*((1/lambda)-(1/Nlambda)) ;//Energy of electron\n", +"disp('meters',Nlambda,'The wavelength of scattered X-rays is');\n", +"disp('J',E,'Energy of electron is ');\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in Js\n", +"c = 3e8; // Velocity of light in vaccum\n", +"lambda = 0.03e-10; // Wavelength of light in meters\n", +"theta = 60;//angle in degree\n", +"delta = (h*(1-cosd(theta)))/(m*c);\n", +"Nlambda = lambda + delta;\n", +"E = ((h*c)*((1/lambda)-(1/Nlambda)))/1.6e-19 ;//Energy of recoiling electron\n", +"disp('eV',E,'Energy of recoiling electron is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in Js\n", +"c = 3e8; // Velocity of light in vaccum\n", +"lambda = 0.5e-10; // Wavelength of light in meters\n", +"theta = 90;\n", +"delta = (h*(1-cosd(theta)))/(m*c);\n", +"Nlambda = lambda + delta;\n", +"E = (h*c)*((1/lambda)-(1/Nlambda)) ;\n", +"disp('J',E,'Energy of electron is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m = 9.1e-31; // Mass of electron in kg\n", +"h = 6.62e-34; // Planck's constant in Js\n", +"c = 3e8; // Velocity of light in vaccum\n", +"lambda = 1.5e-10; // Wavelength of light in meters\n", +"E = 0.5e-16; // Energy of electron in J \n", +"Nlambda = ((h*c)/lambda)-E;//'Energy of scattered electron\n", +"disp('J',Nlambda,'Energy of scattered electron is ');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |