summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb')
-rw-r--r--Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb177
1 files changed, 177 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb
new file mode 100644
index 0000000..739d48f
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb
@@ -0,0 +1,177 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Conducting Materials "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n = 5.8*1e28; // Electrons density in electrons per cube meter\n",
+"rho = 1.58*1e-8; //Resistivity of wire in ohm meter\n",
+"m = 9.1*1e-31; // Mass of electron \n",
+"e = 1.6*1e-19; // Charge of electron in coloumb\n",
+"E = 1e2; // Electric field\n",
+"t = m/(rho*n*e^2);\n",
+"u = (e*t)/m;\n",
+"v = u*E; \n",
+"disp('s',t,'The relaxation time is ');\n",
+"disp('m^2/volt sec',u,'The mobility of electrons ');\n",
+"disp('m/s',v,'The average drift velocity for an electric field of 1V/cm is ');\n",
+"//slight variation in ans than book.. checked in calculator also"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e = 1.6*1e-19; // Charge on electron in coulumb\n",
+"m = 9.1*1e-31; // Mass of electron in kg \n",
+"rho = 1.54*1e-8; //Resistivity of material at room temperature in ohm . meter\n",
+"n = 5.8*1e28; // Number of electrons per cubic meter\n",
+"Ef = 5.5; // The fermi energy of the conductor in eV\n",
+"vf = sqrt((2*Ef*e)/m);\n",
+"t = (m/(n*e^2*rho));\n",
+"MFP = vf*t;\n",
+"disp('m/s',vf,'Velocity of electron is');\n",
+"disp('m',MFP,'Mean free path of electron is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"m = 9.1*1e-31; //Mass of electron in kg\n",
+"e = 1.6*1e-19; // Charge on electron in coulumb\n",
+"t = 3*1e-14; // Relaxation time in seconds\n",
+"n = 5.8*1e28; //Number of electrons in cubic meter\n",
+"rho =m/(n*t*e*e);//The resistivity of metal \n",
+"u = 1/(n*e*rho);//The mobility of electron \n",
+"disp('Ohm.meter',rho,'The resistivity of metal is');\n",
+"disp('sqaure meter per volt.second',u,'The mobility of electron is'); \n",
+"//slight variation in ans than book.. checked in calculator also(Mistake in textbook)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e = 1.6*1e-19; // Charge of electrons in coloumbs\n",
+"m = 9.1*1e-31; // Mass of electrons in Kg\n",
+"Ef = 7*e ; //Fermi energy in electrons volt\n",
+"t = 3*1e-14; // Relaxation time in seconds\n",
+"vf = sqrt(Ef*2/m);\n",
+"lambda = vf*t;//The mean free path of electrons \n",
+"disp('Meters',lambda,'The mean free path of electrons is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"rhoC = 1.65*1e-8; // Electrical resistivity of cpooer in ohm meter\n",
+"rhoN = 14*1e-8; // Electrical resistivity of Nickel in ohm meter\n",
+"T = 300; // Room temperature in kelvin\n",
+"KCu =(2.45*1e-8*T)/rhoC;//Thermal conductivity of Cu\n",
+"KNi =2.45*1e-8*T/rhoN;//Thermal conductivity of Ni\n",
+"disp('W/(m*degree)',KCu,'Thermal conductivity of Cu is ');\n",
+"disp('W/(m*degree)',KNi,'Thermal conductivity of Ni is ');\n",
+"//slight variation in ans than book.. checked in calculator also(Mistake in Textbbok)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}