diff options
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb')
-rw-r--r-- | Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb | 177 |
1 files changed, 177 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb new file mode 100644 index 0000000..739d48f --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/8-Conducting_Materials_.ipynb @@ -0,0 +1,177 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Conducting Materials " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"n = 5.8*1e28; // Electrons density in electrons per cube meter\n", +"rho = 1.58*1e-8; //Resistivity of wire in ohm meter\n", +"m = 9.1*1e-31; // Mass of electron \n", +"e = 1.6*1e-19; // Charge of electron in coloumb\n", +"E = 1e2; // Electric field\n", +"t = m/(rho*n*e^2);\n", +"u = (e*t)/m;\n", +"v = u*E; \n", +"disp('s',t,'The relaxation time is ');\n", +"disp('m^2/volt sec',u,'The mobility of electrons ');\n", +"disp('m/s',v,'The average drift velocity for an electric field of 1V/cm is ');\n", +"//slight variation in ans than book.. checked in calculator also" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e = 1.6*1e-19; // Charge on electron in coulumb\n", +"m = 9.1*1e-31; // Mass of electron in kg \n", +"rho = 1.54*1e-8; //Resistivity of material at room temperature in ohm . meter\n", +"n = 5.8*1e28; // Number of electrons per cubic meter\n", +"Ef = 5.5; // The fermi energy of the conductor in eV\n", +"vf = sqrt((2*Ef*e)/m);\n", +"t = (m/(n*e^2*rho));\n", +"MFP = vf*t;\n", +"disp('m/s',vf,'Velocity of electron is');\n", +"disp('m',MFP,'Mean free path of electron is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"m = 9.1*1e-31; //Mass of electron in kg\n", +"e = 1.6*1e-19; // Charge on electron in coulumb\n", +"t = 3*1e-14; // Relaxation time in seconds\n", +"n = 5.8*1e28; //Number of electrons in cubic meter\n", +"rho =m/(n*t*e*e);//The resistivity of metal \n", +"u = 1/(n*e*rho);//The mobility of electron \n", +"disp('Ohm.meter',rho,'The resistivity of metal is');\n", +"disp('sqaure meter per volt.second',u,'The mobility of electron is'); \n", +"//slight variation in ans than book.. checked in calculator also(Mistake in textbook)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"e = 1.6*1e-19; // Charge of electrons in coloumbs\n", +"m = 9.1*1e-31; // Mass of electrons in Kg\n", +"Ef = 7*e ; //Fermi energy in electrons volt\n", +"t = 3*1e-14; // Relaxation time in seconds\n", +"vf = sqrt(Ef*2/m);\n", +"lambda = vf*t;//The mean free path of electrons \n", +"disp('Meters',lambda,'The mean free path of electrons is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"rhoC = 1.65*1e-8; // Electrical resistivity of cpooer in ohm meter\n", +"rhoN = 14*1e-8; // Electrical resistivity of Nickel in ohm meter\n", +"T = 300; // Room temperature in kelvin\n", +"KCu =(2.45*1e-8*T)/rhoC;//Thermal conductivity of Cu\n", +"KNi =2.45*1e-8*T/rhoN;//Thermal conductivity of Ni\n", +"disp('W/(m*degree)',KCu,'Thermal conductivity of Cu is ');\n", +"disp('W/(m*degree)',KNi,'Thermal conductivity of Ni is ');\n", +"//slight variation in ans than book.. checked in calculator also(Mistake in Textbbok)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |