summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb')
-rw-r--r--Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb227
1 files changed, 227 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb b/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb
new file mode 100644
index 0000000..1aa162b
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/7-Optical_Fiber_Communication.ipynb
@@ -0,0 +1,227 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Optical Fiber Communication"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"NA = 0.24;//Numerical Aperture\n",
+"delta = 0.014;\n",
+"n1 = (NA)/sqrt(2*delta);//Refractive index of first medium \n",
+"disp('',n1,'Refractive index of first medium is ');\n",
+"n2 = n1 - (delta*n1);//Refractive index of secong material\n",
+"disp('',n2,'Refractive index of secong material is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n1 = 1.49; // Refractive index of first medium\n",
+"n2 = 1.44; // Refractive index of second medium\n",
+"delta = (n1-n2)/n1; // Index difference\n",
+"NA = n1* sqrt(2*delta);\n",
+"disp('',NA,'Numerical Aperture of fiber is');\n",
+"thetaa = asind(NA);\n",
+"disp('degree',thetaa,'Acceptance angle is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"NA = 0.15 ; // Numerical Aperture of fiber\n",
+"n2 = 1.55; // Refractive index of cladding\n",
+"n0w = 1.33; // Refractive index of water\n",
+"n0a = 1; // Refractive index of air\n",
+"n1 = sqrt(NA^2 + n2^2);\n",
+"NAW = (sqrt(n1^2 -n2^2))/n0w;\n",
+"thetaa = asind(NAW);//Acceptance angle in water\n",
+"disp('degree',thetaa,'Acceptance angle in water is '); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 16; // Length of optical fiber in Km\n",
+"Pi = 240e-6; // Mean optical length launched in optical fiber in Watts\n",
+"Po = 6e-6; // Mean optical power at the output in watts\n",
+"alpha = 10*log10(Pi/Po);//Signal attenuation in fiber\n",
+"disp('dB',alpha,'Signal attenuation in fiber')\n",
+"alpha1 = alpha/l;//Signal attenuation per km of the fiber\n",
+"disp('dB/km',alpha1,'Signal attenuation per km of the fiber');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Tf = 1400; // Fictive temperature of silicon in Kelvin\n",
+"betai = 7e-11; // Isothermal compressibility square meter per newton\n",
+"n = 1.46; // Refractive index of silicon\n",
+"p = 0.286; // Photoelastic constant of silicon\n",
+"lambda = 0.63e-6 // Wavelength in micrometer\n",
+"kb = 1.38e-23 // Boltzmann constant in joule per kelvin\n",
+"L = 1e3;\n",
+"alphas = (8 * %pi^3 * n^8 * p^2 * kb * Tf * betai)/(3 * lambda^4);//Rayleigh scattering coefficient\n",
+"alphars = exp(-alphas * L);//Loss factor\n",
+"disp('meter^-1',alphas,'Rayleigh scattering coefficient is ');\n",
+"disp('',alphars,'Loss factor is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"alpha = 0.5; // Attenuation of single mode optical fibre in dB per km\n",
+"lambda = 1.4; // Operating wavelength of optical fiber in micrometer\n",
+"d = 8 // Diameter of fiber in micrometer\n",
+"y = 0.6; // Laser source frequency width\n",
+"pb = 4.4e-3 * d^2 * lambda^2 * alpha * y;//Threshold optical power in SBS\n",
+"prs = 5.9e-2 * d^2 * lambda * alpha;//Threshold optical power in SRS\n",
+"disp('W',pb,'Threshold optical power in SBS');\n",
+"disp('W',prs,'Threshold optical power in SRS');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n1 = 1.50; // Refreactive index of forst medium\n",
+"delta = 0.003; // Index difference\n",
+"lambda = 1.6*1e-6; // Operating wavelength of fober in meter\n",
+"x=2*delta*n1*n1\n",
+"n2 = sqrt(n1^2-x);//refractive index of cladding\n",
+"disp(n2,'refractive index of cladding');\n",
+"rc = (3*n1^2*lambda)/(4*%pi*sqrt(n1^2 - n2^2)^3);//The critical radius of curvature for which bending losses occur \n",
+"disp('meter',rc,'The critical radius of curvature for which bending losses occur is ');\n",
+"//there is variation in answer than book .. book's answer is wright but in scilab it is not coming..(scilab mistake)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}