summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb')
-rw-r--r--Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb205
1 files changed, 205 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb
new file mode 100644
index 0000000..c5c372e
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb
@@ -0,0 +1,205 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Superconductivity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Tc=7.26;//critical tempreture in kelvin\n",
+"H0=8*1e5/(4*%pi);//magnetic field at 0K\n",
+"T=5;//tempreture in kelvin\n",
+"Hc=H0*(1-(T/Tc)^2);//megnrtic field at 5K\n",
+"disp('A/m',Hc,'megnrtic field at 5K tempreture');\n",
+"//there is variation in the answer than book.. checked in calculator too.."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Tc=0.3;//given tempareture in kelvin\n",
+"thetad=300;\n",
+"//part a\n",
+"N0g=-1/(log(Tc/thetad));\n",
+"disp(N0g,'the value of N0g is');\n",
+"//part b\n",
+"kB=1.38*1e-23;//boltzmann constant\n",
+"Eg=3.5*kB*Tc;//energy\n",
+"disp('J',Eg,'energy is=');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"H0=0.0306;//given constant characteristic of lead material\n",
+"Tc=3.7;//given tempareture in kelvin\n",
+"T=2;//given tempareture in kelvin\n",
+"x=(T/Tc)*(T/Tc);\n",
+"Hc=H0*(1-x);//value of magnetic field at 2K temp\n",
+"disp('T',Hc,'value of magnetic field at 2K temp=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"HcT=2*1e5/(4*%pi);//magnetic field intensity at T K\n",
+"Hc0=3*1e5/(4*%pi);//magnetic field intensity at T=0K\n",
+"Tc=3.69;//given temperature in K\n",
+"T=sqrt(1-(HcT/Hc0))*Tc;//tempreture in K\n",
+"disp('K',T,'temperature of superconducture is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"H0=6.5*1e4;//given constant characteristic of lead material\n",
+"Tc=7.18;//given temprature in kelvin\n",
+"T=4.2;//given temprature in kelvin\n",
+"//part a\n",
+"x=(T/Tc)*(T/Tc);\n",
+"Hc=H0*(1-x);//value of magnetic field at 4.2K temp\n",
+"disp('A/M',Hc,'value of magnetic field at 4.2K temp=');\n",
+"//part b\n",
+"r=1e-3/2;//given radius\n",
+"Ic=2*%pi*r*Hc;//critical current\n",
+"disp('A',Ic,'critical current is=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"lemdaT=750;//given penetration depth at T=3.5K\n",
+"Tc=4.22;//given critical tempreture\n",
+"T=3.5;////given tempareture\n",
+"//part a\n",
+"x=(T/Tc)^4;//temporary variable\n",
+"lemda0=lemdaT/sqrt(1-x);//penetration depth at T=0K\n",
+"disp('Angstrome',lemda0,'penetration depth at T=0K is=');\n",
+"//part b\n",
+"N=6.02*1e26;//given\n",
+"alpha=13.55*1e3;//given\n",
+"M=200.6;//given\n",
+"n0=N*alpha/M;\n",
+"disp('/m^3',n0,'molecular density=');\n",
+"ns=n0*(1-(T/Tc)^4);//superconducting electron density\n",
+"disp('/m^3',ns,'superconducting electron density=');\n",
+"//Result printed wrong in book"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}