diff options
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb')
-rw-r--r-- | Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb new file mode 100644 index 0000000..c5c372e --- /dev/null +++ b/Engineering_Physics_by_K_Rajagopal/12-Superconductivity.ipynb @@ -0,0 +1,205 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Superconductivity" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Tc=7.26;//critical tempreture in kelvin\n", +"H0=8*1e5/(4*%pi);//magnetic field at 0K\n", +"T=5;//tempreture in kelvin\n", +"Hc=H0*(1-(T/Tc)^2);//megnrtic field at 5K\n", +"disp('A/m',Hc,'megnrtic field at 5K tempreture');\n", +"//there is variation in the answer than book.. checked in calculator too.." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"Tc=0.3;//given tempareture in kelvin\n", +"thetad=300;\n", +"//part a\n", +"N0g=-1/(log(Tc/thetad));\n", +"disp(N0g,'the value of N0g is');\n", +"//part b\n", +"kB=1.38*1e-23;//boltzmann constant\n", +"Eg=3.5*kB*Tc;//energy\n", +"disp('J',Eg,'energy is=');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"H0=0.0306;//given constant characteristic of lead material\n", +"Tc=3.7;//given tempareture in kelvin\n", +"T=2;//given tempareture in kelvin\n", +"x=(T/Tc)*(T/Tc);\n", +"Hc=H0*(1-x);//value of magnetic field at 2K temp\n", +"disp('T',Hc,'value of magnetic field at 2K temp=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"HcT=2*1e5/(4*%pi);//magnetic field intensity at T K\n", +"Hc0=3*1e5/(4*%pi);//magnetic field intensity at T=0K\n", +"Tc=3.69;//given temperature in K\n", +"T=sqrt(1-(HcT/Hc0))*Tc;//tempreture in K\n", +"disp('K',T,'temperature of superconducture is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"H0=6.5*1e4;//given constant characteristic of lead material\n", +"Tc=7.18;//given temprature in kelvin\n", +"T=4.2;//given temprature in kelvin\n", +"//part a\n", +"x=(T/Tc)*(T/Tc);\n", +"Hc=H0*(1-x);//value of magnetic field at 4.2K temp\n", +"disp('A/M',Hc,'value of magnetic field at 4.2K temp=');\n", +"//part b\n", +"r=1e-3/2;//given radius\n", +"Ic=2*%pi*r*Hc;//critical current\n", +"disp('A',Ic,'critical current is=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear all;\n", +"lemdaT=750;//given penetration depth at T=3.5K\n", +"Tc=4.22;//given critical tempreture\n", +"T=3.5;////given tempareture\n", +"//part a\n", +"x=(T/Tc)^4;//temporary variable\n", +"lemda0=lemdaT/sqrt(1-x);//penetration depth at T=0K\n", +"disp('Angstrome',lemda0,'penetration depth at T=0K is=');\n", +"//part b\n", +"N=6.02*1e26;//given\n", +"alpha=13.55*1e3;//given\n", +"M=200.6;//given\n", +"n0=N*alpha/M;\n", +"disp('/m^3',n0,'molecular density=');\n", +"ns=n0*(1-(T/Tc)^4);//superconducting electron density\n", +"disp('/m^3',ns,'superconducting electron density=');\n", +"//Result printed wrong in book" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |