diff options
Diffstat (limited to 'Engineering_Physics_by_H_K_Malik/20-X_RAY.ipynb')
-rw-r--r-- | Engineering_Physics_by_H_K_Malik/20-X_RAY.ipynb | 597 |
1 files changed, 597 insertions, 0 deletions
diff --git a/Engineering_Physics_by_H_K_Malik/20-X_RAY.ipynb b/Engineering_Physics_by_H_K_Malik/20-X_RAY.ipynb new file mode 100644 index 0000000..fbba329 --- /dev/null +++ b/Engineering_Physics_by_H_K_Malik/20-X_RAY.ipynb @@ -0,0 +1,597 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 20: X RAY" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.10: Calculation_of_Applied_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"lambda1 = 40e-12 // minimum wavelength in first case in m\n", +"lambda2 = 1e-10 // minimum wavelength in second case in m\n", +"// Sample Problem 10 on page no. 20.10\n", +"printf('\n # PROBLEM 10 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('lambda_min = 12400/V \n')\n", +"V1 = 12400e-10 / lambda1\n", +"V2 = 12400e-10 / lambda2\n", +"printf('\n Applied voltage to get wavelength of %e meter is %f KV. \n Applied voltage to get wavelength of %e meter is %f KV.',lambda1,V1/10^3,lambda2,V2/10^3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.11: Calculation_of_Planck_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V1 = 44e3 // voltage in first case in V\n", +"V2 = 50e3 // voltage in second case in V\n", +"lambda1 = 0.284e-10 // shortest wavelength in first case in m\n", +"lambda2 = 0.248e-10 // shortest wavelength in second case in m\n", +"e = 1.6e-19 // charge on an electron in C\n", +"c = 3e8 // speed of light in m/sec\n", +"// Sample Problem 11 on page no. 20.10\n", +"printf('\n # PROBLEM 11 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf(' h*c/Lambda = eV \n')\n", +"h1 = e * V1 * lambda1 / c\n", +"h2 = e * V2 * lambda2 / c\n", +"printf('\n Planck constant is %e J sec if shortest wavelength is %e m .\n Planck constant is %e Jsec if shortest wavelength is %e m. ',h1,lambda1,h2,lambda2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.12: Calculation_of_Excitation_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"lambda = 1e-11 // K-absorption limit for uranium in m\n", +"// Sample Problem 12 on page no. 20.10\n", +"printf('\n # PROBLEM 12 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('lambda_min = 12400/V \n')\n", +"V = 12400e-10 / lambda\n", +"printf('\n Excitation potential is %d kV.',V/10^3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.13: Calculation_of_the_value_of_the_ratio_of_plank_constant_and_charge_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"lambda = 1.4e-11 // K-absorption edge for lead in m\n", +"V = 88.6e3 // minimum voltage required for producing k-lines in V\n", +"c = 3e8 // speed of light in m/sec\n", +"// Sample Problem 13 on page no. 20.11\n", +"printf('\n # PROBLEM 13 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf(' h*c/Lambda = eV \n')\n", +"r = V * lambda / c\n", +"printf('\n The value of the ratio of h/e = %e Jsec/C.',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.14: Calculation_of_Wavelength_of_K_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"Z = 92 // atomic no. of atom\n", +"Rh = 1.1e5 // Rydberg constant in cm^-1\n", +"c = 3e8 // speed of light in m/sec\n", +"// Sample Problem 14 on page no. 20.11\n", +"printf('\n # PROBLEM 14 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf(' Moseley Law \n ')\n", +"lambda = 1 / (Rh *(Z-1)^2 * (1 - (1 / 2^2)))\n", +"printf('\n Wavelength of K line = %f A',lambda*1e8)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.15: Calculation_of_Wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"Z = 42 // atomic no. of Mo\n", +"lambda = 0.71e-10 // wavelength in m\n", +"Z_ = 29 // atomic no. of Cu\n", +"// Sample Problem 15 on page no. 20.11\n", +"printf('\n # PROBLEM 15 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf(' nu = a*(Z-b)^2 ........Moseley law \n')\n", +"lambda_ = (Z-1)^2 * lambda / (Z_-1)^2\n", +"printf('\n Wavelength of the corresponding radiation of Cu is %f Angstrom.',lambda_*1e10)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.16: Calculation_of_Wavelength_of_xray.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"Z = 79 // atomic no. of element\n", +"b = 1 // a constant\n", +"a = 2.468e15 // a constant in per sec\n", +"c = 3e8 // speed of light in m/sec\n", +"// Sample Problem 16 on page no. 20.12\n", +"printf('\n # PROBLEM 16 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf(' nu = a*(Z-b)^2 ........Moseley law \n')\n", +"f = a * (Z - b)^2\n", +"lambda = c / f\n", +"printf('\n Wavelength of x-ray is %f Angstrom.',lambda*1e10)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.17: Calculation_of_Ionization_potential_of_K_shell_electron_of_Cu.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"Z = 29 // atomic no. of Cu\n", +"R = 1.097e7 // Rydberg constant in m^-1\n", +"c = 3e8 // speed of light in m/sec\n", +"h = 6.62e-34 // Planck constant in J sec\n", +"// Sample Problem 17 on page no. 20.12\n", +"printf('\n # PROBLEM 17 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf(' nu = a*(Z-b)^2 ........Moseley law \n')\n", +"f = 3/4 * (R * c) * (Z-1)^2\n", +"E = h * f / 1.6e-16\n", +"E_L = 0.931 // let E_L = 0.931 KeV\n", +"E_ = E + E_L\n", +"printf('\n Ionization potential of K-shell electron of Cu is %f keV.',E_)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.18: Calculation_of_Frequency_of_k_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"Z = 79 // atomic no. of anticathode\n", +"R = 1.097e7 // Rydberg constant in m^-1\n", +"c = 3e8 // speed of light in m/sec\n", +"// Sample Problem 18 on page no. 20.13\n", +"printf('\n # PROBLEM 18 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf(' nu = a*(Z-b)^2 ........Moseley law \n')\n", +"f = 3/4 * (R * c) * (Z-1)^2\n", +"printf('\n Frequency of k line is %e Hz.',f)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.19: Calculation_of_Energy_and_Wavelength_of_xray.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"Z = 27 // atomic no. of Co\n", +"R = 1.097e7 // Rydberg constant in m^-1\n", +"c = 3e8 // speed of light in m/sec\n", +"h = 6.62e-34 // Planck constant in J sec\n", +"// Sample Problem 19 on page no. 20.13\n", +"printf('\n # PROBLEM 19 # \n')\n", +"printf('Standard formula used \n')\n", +"printf(' nu = a*(Z-b)^2 ........Moseley law \n')\n", +"f = 3/4 * (R * c) * (Z-1)^2\n", +"E = h * f\n", +"lambda = c / f\n", +"printf('\n Energy is %f keV.\n Wavelength of x-ray is %f Angstrom.',E / 1.6e-16,lambda*1e10)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.1: Calculation_of_Max_speed_and_Shortest_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V1 = 40e3 // voltage in first case in V\n", +"V2 = 20e3 // voltage in second case in V\n", +"V3 = 100e3 // voltage in second in V\n", +"// Sample Problem 1 on page no. 20.7\n", +"printf('\n # PROBLEM 1 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('1/2*m*v^2 = eV \n')\n", +"v1 = 0.593e6 * sqrt(V1)\n", +"lambda1 = 12400 / V1\n", +"v2 = 0.593e6 * sqrt(V2)\n", +"lambda2 = 12400 / V2\n", +"v3 = 0.593e6 * sqrt(V3)\n", +"lambda3 = 12400 / V3\n", +"printf('\n Max. speed of electrons at %d Volts is %e m/sec.\n Max. speed of electrons at %d Volts is %e m/sec./sec.\n Max. speed of electrons at %d Volts is %e m/sec. \n Shortest wavelength of x-ray = %f Angstrom.\n Shortest wavelength of x-ray = %f Angstrom.\n Shortest wavelength of x-ray = %f Angstrom.',V1,v1,V2,v2,V3,v3,lambda1,lambda2,lambda3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2: Calculation_of_Planck_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 30e3 // voltage in V\n", +"lambda_min = 0.414e-10 // shortest wavelength in m\n", +"e = 1.6e-19 // charge on an electron in C\n", +"c = 3e8 // speed of light in m/sec\n", +"// Sample Problem 2 on page no. 20.7\n", +"printf('\n # PROBLEM 2 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('h*c/lambda = eV \n')\n", +"h = (e * V * lambda_min) / c\n", +"printf('\n Planck constant is %e J sec.',h)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.3: Calculation_of_Minimum_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 25e3 // voltage in V\n", +"// Sample Problem 3 on page no. 20.8\n", +"printf('\n # PROBLEM 3 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('Lambda_min = 12400/V \n')\n", +"lambda_min = 12400 / V\n", +"printf('\n Minimum wavelength of x-ray is %f Angstrom.',lambda_min)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4: Calculation_of_Maximum_speed_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 13.6e3 // voltage in V\n", +"// Sample Problem 4 on page no. 20.8\n", +"printf('\n # PROBLEM 4 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('1/2*m*v^2 = eV \n')\n", +"v = 0.593e6*sqrt(V)\n", +"printf('\n Maximum speed of electron is %e m/sec.',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.5: Calculation_of_Velocity_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 10e3 // voltage in V\n", +"i = 2e-3 // current in amp\n", +"// Sample Problem 5 on page no. 20.8\n", +"printf('\n # PROBLEM 5 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('1/2*m*v^2 = eV \n')\n", +"v = 0.593e6*sqrt(V)\n", +"printf('\n Velocity of electron is %e m/sec.',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.6: Calculation_of_Highest_frequency_and_Minimum_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 9.8e3 // voltage in V\n", +"i = 2e-3 // current in amp\n", +"c = 3e8 // speed of light in m/sec\n", +"// Sample Problem 6 on page no. 20.8\n", +"printf('\n # PROBLEM 6 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('h*c/lambda = eV \n')\n", +"lambda = 12400 / V\n", +"f = c / lambda\n", +"printf('\n Highest frequency is %e Hz.\n Minimum wavelength is %f Angstrom.',f,lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.7: Calculation_of_Number_of_electrons_striking_the_target_and_Speed_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 12.4e3 // voltage in V\n", +"i = 2e-3 // current in amp\n", +"e = 1.6e-19 // charge on an electron in C\n", +"// Sample Problem 7 on page no. 20.9\n", +"printf('\n # PROBLEM 7 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('I = ne \n 1/2*m*v^2 = eV \n')\n", +"n = i / e\n", +"v = 0.593e6*sqrt(V)\n", +"printf('\n Number of electrons striking the target per sec is %e.\n Speed of electrons is %e m/sec.',n,v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.8: Calculation_of_Number_of_electrons_striking_the_anode_and_Minimum_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 10e3 // voltage in V\n", +"i = 15e-3 // current in amp\n", +"e = 1.6e-19 // charge on an electron in C\n", +"// Sample Problem 8 on page no. 20.9\n", +"printf('\n # PROBLEM 8 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('I = ne \n 1/2*m*v^2 = eV \n')\n", +"n = i / e\n", +"lambda = 12400 / V \n", +"printf('\n Number of electrons striking the anode per sec is %e.\n Minimum wavelength produced is %f Angstrom.',n,lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.9: Calculation_of_Number_of_electrons_striking_the_anode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"V = 50e3 // voltage in V\n", +"i = 1e-3 // current in amp\n", +"e = 1.6e-19 // charge on an electron in C\n", +"// Sample Problem 9 on page no. 20.9\n", +"printf('\n # PROBLEM 9 # \n')\n", +"printf('Standard formula used \n ')\n", +"printf('I = ne \n')\n", +"n = i / e\n", +"printf('\n Number of electrons striking the anode per sec is %e.',n)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |