diff options
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb')
-rw-r--r-- | Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb b/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb new file mode 100644 index 0000000..23c2a84 --- /dev/null +++ b/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb @@ -0,0 +1,169 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: SUPERCONDUCTIVITY" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Frequency_of_Josephson_current.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex7.2 : Frequency of Josephson current : Page-152 (2010)\n", +"V = 1e-06; // DC voltage applied across the Josephson junction, volt\n", +"e = 1.6e-019; // Charge on an electron, C\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"f = 2*e*V/h; // Frequency of Josephson current, Hz\n", +"printf('\nThe frequency of Josephson current = %5.1f MHz', f/1e+06);\n", +"\n", +"// Result \n", +"// The frequency of Josephson current = 482.9 MHz " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Superconducting_energy_gap_at_0K.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex7.3 : Superconducting energy gap at 0K : Page-152 (2010)\n", +"T_c = 0.517; // Critical temperature for cadmium, K\n", +"k = 1.38e-023; // Boltzmann constant, J/K\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"E_g = 3.5*k*T_c/e; // Superconducting energy gap at absolute zero, eV\n", +"printf('\nThe superconducting energy gap for Cd at absolute zero = %4.2e eV',E_g);\n", +"\n", +"// Result \n", +"// The superconducting energy gap for Cd at absolute zero = 1.56e-004 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: Wavelength_of_photon_to_break_up_a_Cooper_pair.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex7.4 : Wavelength of photon to break up a Cooper-pair: Page-152 (2010)\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"c = 3e+08; // Speed of light in free space, m/s\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"E_g = 1.5e-004; // Superconducting energy gap for a material, eV\n", +"// As E_g = h*f = h*c/lambda, solving for lambda\n", +"lambda = h*c/(E_g*e); // Wavelength of photon to break up a Cooper-pair, m\n", +"printf('\nThe wavelength of photon to break up a Cooper-pair = %4.2e m', lambda);\n", +"\n", +"// Result \n", +"// The wavelength of photon to break up a Cooper-pair = 8.28e-003 m " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: Variation_of_London_penetration_depth_with_temperature.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex7.5: Variation of London penetration depth with temperature: Page-153 (2010)\n", +"lambda_0 = 37e-009; // Penetration depth of lead at 0 kelvin, m\n", +"T_c = 7.193; // Critical temperature of superconducting transition for lead, kelvin\n", +"T = 5.2; // Temperature at which penetration depth for lead becomes lambda_T, kelvin \n", +"lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2); // Penetration depth of lead at 5.2 kelvin, m\n", +"printf('\nThe penetration depth of lead at %3.1f K = %4.1f nm',T, lambda_T/1e-009);\n", +"\n", +"// Result\n", +"// The penetration depth of lead at 5.2 K = 43.4 nm " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: Isotope_Effect_in_mercury.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex7.6: Isotope Effect in mercury: Page-153 (2010)\n", +"M1 = 199; // Mass of an isotope of mercury, amu\n", +"T_C1 = 4.185; // Transition temperature of the isoptope of Hg, K\n", +"T_C2 = 4.153; // Transition temperature of another isoptope of Hg, K\n", +"alpha = 0.5; // Isotope coefficient\n", +"M2 = M1*(T_C1/T_C2)^(1/alpha); // Mass of another isotope of mercury, amu\n", +"printf('\nThe mass of another isotope of mercury at %5.3f K = %6.2f amu',T_C2, M2);\n", +"\n", +"// Result\n", +"// The mass of another isotope of mercury at 4.153 K = 202.08 amu " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |