summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb')
-rw-r--r--Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb169
1 files changed, 169 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb b/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb
new file mode 100644
index 0000000..23c2a84
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb
@@ -0,0 +1,169 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: SUPERCONDUCTIVITY"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Frequency_of_Josephson_current.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.2 : Frequency of Josephson current : Page-152 (2010)\n",
+"V = 1e-06; // DC voltage applied across the Josephson junction, volt\n",
+"e = 1.6e-019; // Charge on an electron, C\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"f = 2*e*V/h; // Frequency of Josephson current, Hz\n",
+"printf('\nThe frequency of Josephson current = %5.1f MHz', f/1e+06);\n",
+"\n",
+"// Result \n",
+"// The frequency of Josephson current = 482.9 MHz "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Superconducting_energy_gap_at_0K.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.3 : Superconducting energy gap at 0K : Page-152 (2010)\n",
+"T_c = 0.517; // Critical temperature for cadmium, K\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"E_g = 3.5*k*T_c/e; // Superconducting energy gap at absolute zero, eV\n",
+"printf('\nThe superconducting energy gap for Cd at absolute zero = %4.2e eV',E_g);\n",
+"\n",
+"// Result \n",
+"// The superconducting energy gap for Cd at absolute zero = 1.56e-004 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Wavelength_of_photon_to_break_up_a_Cooper_pair.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.4 : Wavelength of photon to break up a Cooper-pair: Page-152 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"c = 3e+08; // Speed of light in free space, m/s\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"E_g = 1.5e-004; // Superconducting energy gap for a material, eV\n",
+"// As E_g = h*f = h*c/lambda, solving for lambda\n",
+"lambda = h*c/(E_g*e); // Wavelength of photon to break up a Cooper-pair, m\n",
+"printf('\nThe wavelength of photon to break up a Cooper-pair = %4.2e m', lambda);\n",
+"\n",
+"// Result \n",
+"// The wavelength of photon to break up a Cooper-pair = 8.28e-003 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Variation_of_London_penetration_depth_with_temperature.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.5: Variation of London penetration depth with temperature: Page-153 (2010)\n",
+"lambda_0 = 37e-009; // Penetration depth of lead at 0 kelvin, m\n",
+"T_c = 7.193; // Critical temperature of superconducting transition for lead, kelvin\n",
+"T = 5.2; // Temperature at which penetration depth for lead becomes lambda_T, kelvin \n",
+"lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2); // Penetration depth of lead at 5.2 kelvin, m\n",
+"printf('\nThe penetration depth of lead at %3.1f K = %4.1f nm',T, lambda_T/1e-009);\n",
+"\n",
+"// Result\n",
+"// The penetration depth of lead at 5.2 K = 43.4 nm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Isotope_Effect_in_mercury.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.6: Isotope Effect in mercury: Page-153 (2010)\n",
+"M1 = 199; // Mass of an isotope of mercury, amu\n",
+"T_C1 = 4.185; // Transition temperature of the isoptope of Hg, K\n",
+"T_C2 = 4.153; // Transition temperature of another isoptope of Hg, K\n",
+"alpha = 0.5; // Isotope coefficient\n",
+"M2 = M1*(T_C1/T_C2)^(1/alpha); // Mass of another isotope of mercury, amu\n",
+"printf('\nThe mass of another isotope of mercury at %5.3f K = %6.2f amu',T_C2, M2);\n",
+"\n",
+"// Result\n",
+"// The mass of another isotope of mercury at 4.153 K = 202.08 amu "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}