diff options
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb')
-rw-r--r-- | Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb | 209 |
1 files changed, 209 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb b/Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb new file mode 100644 index 0000000..7cd49fb --- /dev/null +++ b/Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb @@ -0,0 +1,209 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: THERMAL PROPERTIES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Debye_temperature_of_aluminium.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex15.1: Page-323 (2010)\n", +"k = 1.38e-023; // Boltzmann constant, J/K\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"f_D = 64e+011; // Debye frequency for Al, Hz\n", +"theta_D = h*f_D/k; // Debye temperature, K\n", +"printf('\nThe Debye temperature of aluminium = %5.1f K', theta_D);\n", +"\n", +"// Result\n", +"// The Debye temperature of aluminium = 307.3 K " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Lattice_specific_heat_of_carbo.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex15.2: Page-323 (2010)\n", +"N = 6.02e+026; // Avogadro's number, per kmol\n", +"k = 1.38e-023; // Boltzmann constant, J/K\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"f_D = 40.5e+012; // Debye frequency for Al, Hz\n", +"T = 30; // Temperature of carbon, Ks\n", +"theta_D = h*f_D/k; // Debye temperature, K\n", +"C_l = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice specific heat of carbon, J/k-mol/K\n", +"printf('\nThe lattice specific heat of carbon = %4.2f J/k-mol/K', C_l);\n", +"\n", +"// Result\n", +"// The lattice specific heat of carbon = 7.13 J/k-mol/K " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: Einstein_frequency_for_Cu.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex15.3: Page-323 (2010)\n", +"k = 1.38e-023; // Boltzmann constant, J/K\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"theta_E = 1990; // Einstein temperature of Cu, K\n", +"f_E = k*theta_E/h; // Einstein frequency for Cu, K\n", +"printf('\nThe Einstein frequency for Cu = %4.2e Hz', f_E);\n", +"printf('\nThe frequency falls in the near infrared region');\n", +"\n", +"// Result\n", +"// The Einstein frequency for Cu = 4.14e+013 Hz\n", +"// The frequency falls in the near infrared region " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Electronic_and_lattice_heat_capacities_for_Cu.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex15.4: Page-323 (2010)\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"N = 6.02e+023; // Avogadro's number, per mol\n", +"T = 0.05; // Temperature of Cu, K\n", +"E_F = 7; // Fermi energy of Cu, eV\n", +"k = 1.38e-023; // Boltzmann constant, J/K\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"theta_D = 348; // Debye temperature of Cu, K\n", +"C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Cu, J/mol/K\n", +"C_V = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice heat capacity of Cu, J/mol/K\n", +"printf('\nThe electronic heat capacity of Cu = %4.2e J/mol/K', C_e);\n", +"printf('\nThe lattice heat capacity of Cu = %4.2e J/mol/K', C_V);\n", +"\n", +"// Result\n", +"// The electronic heat capacity of Cu = 2.53e-005 J/mol/K\n", +"// The lattice heat capacity of Cu = 5.76e-009 J/mol/K " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: Einstein_lattice_specific_heat.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex15.5: Page-324 (2010)\n", +"T = 1; // For simplicity assume temperature to be unity, K\n", +"R = 1; // For simplicity assume molar gas constant to be unity, J/mol/K\n", +"theta_E = T; // Einstein temperature, K\n", +"C_V = 3*R*(theta_E/T)^2*exp(theta_E/T)/(exp(theta_E/T)-1)^2; // Einstein lattice specific heat, J/mol/K\n", +"printf('\nThe Einstein lattice specific heat, C_v = %4.2f X 3R', C_V/3);\n", +"\n", +"// Result\n", +"// The Einstein lattice specific heat, C_v = 0.92 X 3R" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.6: Molar_electronic_heat_capacity_of_zinc.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex15.6: Page-324 (2010)\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"v = 2; // Valency of Zn atom\n", +"N = v*6.02e+023; // Avogadro's number, per mol\n", +"T = 300; // Temperature of Zn, K\n", +"E_F = 9.38; // Fermi energy of Zn, eV\n", +"k = 1.38e-023; // Boltzmann constant, J/K\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Zn, J/mol/K\n", +"printf('\nThe molar electronic heat capacity of zinc = %5.3f J/mol/K', C_e);\n", +"\n", +"// Result\n", +"// The molar electronic heat capacity of zinc = 0.226 J/mol/K " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |