diff options
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb | 418 |
1 files changed, 418 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb new file mode 100644 index 0000000..9300a88 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb @@ -0,0 +1,418 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Additional solved short answers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_10: calculate_interplanar_spacing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 10 , pg 349\n", +"a=4.938 //lattice constant(in Angstrom)\n", +"h=2\n", +"k=2\n", +"l=0 //since (h k l)=(2 2 0) miller indices\n", +"d=a/sqrt(h^2+k^2+l^2) //spacing\n", +"printf('spacing of (2 2 0) planes=')\n", +"printf('d=%.3f Angstrom',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_12: find_the_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 12_b_3 , pg 349\n", +"Eg=0.8*1.6*10^-19 //bandgap (in J) (converting eV into J)\n", +"h=6.625*10^-34 //plancks constant (in J s)\n", +"c=3*10^8 //speed of light (in m/s)\n", +"lam=(h*c)/Eg //wavelength\n", +"printf('wavelength of light emitted (in m)is=')\n", +"disp(lam)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_14: calculate_energy_of_scattered_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 14_a_3 , pg 350\n", +"lam=1.24*10^-13 //wavelength (in m)\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n", +"LAM=lam+delta_H //wavelength (in m)\n", +"E=(h*c)/LAM //energy of scattered photon (in J)\n", +"printf('Energy of scattered photon (in J)=')\n", +"disp(E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_15: calculate_number_of_unit_cells.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 15_b_3 , pg 352\n", +"a=2.88*10^-8 //lattice constant (in cm)\n", +"d=7200 //density (in Kg/m^3)\n", +"C=8/a^3 // atomic concentration\n", +"n=8 //number of atoms/cell\n", +"n1=C/n //unit cell concentration\n", +"\n", +"//since density =7200 Kg/m^3\n", +"//7200 Kg = 10^6 cc\n", +"//hence 1Kg = (10^6)/7200 cc\n", +"N=(n1*10^6)/7200 //number of unit cells present in 1 Kg of metal\n", +"printf('Number of unit cells present in 1 Kg of metal=')\n", +"disp(N)\n", +"printf('unit cells')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_2: find_fundamental_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 2 , pg 348\n", +"l=0.7*10^-3//length(in m)\n", +"E=8.8*10^10//youngs modulus(in N/m^2)\n", +"d=2800//density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal)\n')\n", +"printf('n=%.2f Hz',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_6: calculate_critical_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 6 , pg 348\n", +"n1=1.5 //refractive index of core\n", +"n2= 1.47 // cladding refractive index\n", +"theta_c=asin(n2/n1) //critical angle (in radian)\n", +"printf('critical angle=\n')\n", +"printf('theta_c=%.2f degree',(theta_c*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2_13: calculate_Na_and_acceptance_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 2) 13_b , pg 354\n", +"n1=1.5//core refractive index\n", +"n2=1.447//cladding refractive index\n", +"n0=1//refractive index of air\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"printf('NA=%.1f \n',NA)\n", +"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2_1: calculate_the_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 2) 1 , pg 352\n", +"l=4*10^-2 //length(in m)\n", +"E=207 *10^6 //youngs modulus(in N/m^2)\n", +"d=8900 //density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal)\n')\n", +"printf('n=%.2f Hz',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2_7: calculate_wavelength_of_scattered_radiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 2) 7 , pg 353\n", +"lam=0.5*10^-9 //wavelength (in m)\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(45*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n", +"LAM=lam+delta_H //wavelength (in m)\n", +"printf('wavelength of scattered radiation (im m)=')\n", +"disp(LAM)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_11: calculate_mean_free_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 11_a , pg 355\n", +"Un=3*10^-3 //electron mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=(Me*Un)/e //mean free time\n", +"printf('Mean free time(in S)')\n", +"disp(T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_12: calculate_the_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 12_b , pg 356\n", +"ni=1.5*10^16 //intrinsic carrier density(in m^-3)\n", +"Un=1.35 //electron mobility (in m^2/(V*s))\n", +"up=0.48 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"\n", +"Ix=10^-3 //current (in A)\n", +"d=100*10^-6 //thickness (in m)\n", +"Bz=0.1 //magnetic induction (in T)\n", +"Un1=0.07 //electron mobility (in m^2/(V*s))\n", +"n=10^23 //doping concentration (in atoms/m^3)\n", +"\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"rho=1/sigma //resistivity\n", +"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", +"printf('Resistivity(in ohm*m)')\n", +"disp(rho)\n", +"printf('Hall voltage (in V)')\n", +"disp(Vh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_13: calculate_energy_loss_per_hour_and_intensity_of_magnetization_and_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 13_b , pg 357\n", +"A=250 //area of B-H loop\n", +"f=50 //frequency (in Hz)\n", +"d=7.5*10^3 //density (in Kg/m^3)\n", +"M=10 //mass of core (in Kg)\n", +"\n", +"H=2000 //magnetic field intensity (in A/m)\n", +"Xm=1000 //susceptibility\n", +"U0=4*%pi*10^-7 // relative permeability\n", +"\n", +"V=M/d //volume of sample (in m^3)\n", +"N=60*60*f //number of cycles per hour\n", +"EL=A*V*N //energy loss per hour \n", +"I=H*Xm //intensity of magnetization\n", +"Ur=1+Xm\n", +"B=Ur*U0*H //magnetic flux density\n", +"printf('Energy loss per hour (in J)')\n", +"disp(EL)\n", +"printf('Intensity of magnetization (in Wb/m^3)')\n", +"disp(I)\n", +"printf('Magnetic flux density(in T)')\n", +"disp(B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_14: find_capacitance_and_electric_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 14 , pg 358\n", +"Er1=1.0000684 //Dielectric constant (for sum 14_a_2)\n", +"N=2.7*10^25 //(in atoms/m^3)\n", +"E0=8.85*10^-12 //permittivity of free space (in F/m)\n", +"Er2=6 //dielectric constant (for sum 14_a_3)\n", +"E=100 //electric field intensity (in V/m) (for sum 14_a_3)\n", +"A=200*10^-4 //area (in m^2)\n", +"Er3=3.7 //dielectric constant (for sum 14_b_2)\n", +"d=10^-3 //thickness (in m)\n", +"V=300 //electric potential (in V)\n", +"Alpha_e=(E0*(Er1-1))/N //electronic polarization\n", +"R=(Alpha_e/(4*%pi*E0))^(1/3) //radius of atom\n", +"P=E0*(Er2-1)*E //polarization\n", +"C=(E0*Er3*A)/d //capacitance\n", +"E1=V/d //electric flux density\n", +"printf('Electronic polarization (in F*m^2)')\n", +"disp(Alpha_e)\n", +"printf('Radius of He atom(in m)')\n", +"disp(R)\n", +"printf('polarization(in C/m^2)')\n", +"disp(P)\n", +"printf('capacitance(in F)')\n", +"disp(C)\n", +"printf('Electric flux density (in V/m)')\n", +"disp(E1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |