diff options
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb | 441 |
1 files changed, 441 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb new file mode 100644 index 0000000..52f947f --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb @@ -0,0 +1,441 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: ultrasonics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: To_find_depth_of_sea.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 10 , pg 24\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.83 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by sound\n", +"d1=d/2 //depth of submarine\n", +"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n", +"disp (d1, ' the depth of submarine ( in m) is ' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: To_calculate_reverberation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 11 , pg 24\n", +"aS=1050//total absorption inside hall(in Sabine)\n", +"//a=average absorption coefficient , S=area of interior surface\n", +"V=9000//volume of hall(in m^3)\n", +"T=(0.165*V)/aS//reverberation time\n", +"printf('Reverberation time of hall\n')\n", +"printf('T=%.4f sec',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: To_find_area_of_interior_surface.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 12 , pg 25\n", +"V=13500//volume(in m^3)\n", +"T=1.2//reverberation time(in sec)\n", +"a=0.65//average absorption coefficient(in Sabine/m^2)\n", +"S=(0.165*V)/(a*T)//area of interior surface\n", +"printf('Area of interior surface\n')\n", +"printf('S=%.1f m^2',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.13: To_find_reverberation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 13 , pg 25\n", +"V=15000//volume(in m^3)\n", +"T1=1.3//initial reverberation time(in sec)\n", +"aS=(0.165*V)/T1 //total absorption of hall (in Sabine)\n", +"T2=(0.165*V)/(aS+300)//revrberation time of hall after adding 300 chairs each having absorption of 1 Sabine\n", +"printf('Reverberation time of hall after adding 300 chairs\n')\n", +"printf('T2=%.3f sec',T2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.14: To_find_depth_of_submarine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 14 , pg 26\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.5 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by ultrasonic waves\n", +"d1=d/2 //depth of submarine\n", +"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n", +"disp (d1, ' the depth of submarine ( in m) is ' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.15: To_find_frequency_of_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 15 , pg 26\n", +"lam=2*0.4*10^-3 //distance between 2 antinodes is lam/2 (in m)\n", +"n=1.5*10^6 //frequency of crystal(in Hz)\n", +"v=n*lam //velocity\n", +"printf('velocity of waves in sea water\n')\n", +"printf('v=%.1f m/s',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.16: To_evaluate_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 16 , pg 26\n", +"l=40*10^-3//length(in m)\n", +"E=11.5*10^10//youngs modulus(in N/m^2)\n", +"d=7250//density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal\n')\n", +"printf('n=%.2f KHz',n*10^-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: To_find_depth_of_submerged_submarine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 1 , pg 20\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.33 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by ultrasonic waves\n", +"d1=d/2 //depth of submarine\n", +"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n", +"disp (d1, ' the depth of submarine ( in m) is ' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 2 , pg 21\n", +"d=7.25*10^3 //density(in kg/m^3)\n", +"E=115*10^9 //youngs modulus(in N/m^2)\n", +"l=40*10^-3 //length of rod(in m)\n", +"n=sqrt(E/d)/(2*l) //natural frequency of rod\n", +"disp (n*10^-3, 'the natural frequency of rod (in kHz) is ')\n", +"printf('yes,the rod can be used for producing ultrasonic waves because its frequency lies in the ultrasonic range')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 3 , pg 21\n", +"l=10^-3//length(in m)\n", +"E=7.9*10^10//youngs modulus(in N/m^2)\n", +"d=2650//density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal\n')\n", +"printf('n=%.2f Hz',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: compute_the_velocity_of_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 4 , pg 22\n", +"lam=2*0.55*10^-3 //distance between 2 antinodes is lam/2 (in m)\n", +"n=1.45*10^6 //frequency of crystal(in Hz) (given) they have taken n=1.5 Hz in calculation\n", +"v=n*lam //velocity\n", +"printf('velocity of waves in sea water\n')\n", +"printf('v=%.1f m/s',v)\n", +"\n", +"\n", +"//sum is solved using n=1.5 Hz while the frequency given is n=1.45 Hz " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 5 , pg 22\n", +"l=50*10^-3//length of rod(in m)\n", +"d=7250//density(in kg/m^3)\n", +"E=11.5*10^10//youngs modulus(in N/m^2)\n", +"n=sqrt(E/d)/(2*l)//natural frequency\n", +"printf('Natural frequency of rod\n')\n", +"printf('n=%.2f KHz',n*10^-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 6 , pg 23\n", +"l=2*10^-3//length(in m)\n", +"d=2650//density(in kg/m^3)\n", +"E=7.9*10^10//youngs modulus(in N/m^2)\n", +"p=1\n", +"n=(p*sqrt(E/d))/(2*l)//natural frequency\n", +"printf('frequency of crystal\n')\n", +"printf('n=%.3f MHz',n*10^-6)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 7 , pg 23\n", +"l=3*10^-3//length(in m)\n", +"d=2500//density(in kg/m^3)\n", +"E=8*10^10//youngs modulus(in N/m^2)\n", +"p=1\n", +"n=(p*sqrt(E/d))/(2*l)//natural frequency\n", +"printf('frequency of ultrasound\n')\n", +"printf('n=%.3f KHz',n*10^-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: To_calculate_the_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 8 , pg 23\n", +"l=1.5*10^-3//length(in m)\n", +"d=2650//density(in kg/m^3)\n", +"E=7.9*10^10//youngs modulus(in N/m^2)\n", +"p=1\n", +"n=(p*sqrt(E/d))/(2*l)//natural frequency\n", +"printf('frequency of crystal\n')\n", +"printf('n=%.3f MHz',n*10^-6)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: To_find_depth_of_sea.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 9 , pg 24\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.95 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by ultrasonic waves\n", +"d1=d/2 //depth of sea\n", +"disp (d1, ' the depth of sea ( in m) is ' )\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |