diff options
Diffstat (limited to 'Engineering_Physics_by_D_C_Ghosh/2-Electricity_and_Magnetism.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_C_Ghosh/2-Electricity_and_Magnetism.ipynb | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_C_Ghosh/2-Electricity_and_Magnetism.ipynb b/Engineering_Physics_by_D_C_Ghosh/2-Electricity_and_Magnetism.ipynb new file mode 100644 index 0000000..a3cdc5e --- /dev/null +++ b/Engineering_Physics_by_D_C_Ghosh/2-Electricity_and_Magnetism.ipynb @@ -0,0 +1,234 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Electricity and Magnetism" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12: Work_done_in_moving_a_particle_in_force_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex2.12: Page-80 (2008)\n", +"clc; clear;\n", +"t = poly(0, 't');\n", +"x = t^2 + 1;\n", +"y = 2*t^2;\n", +"z = t^3;\n", +"F = [3*x*y -5*z 10*x]; // Force acting on the particle, N\n", +"t1 = 1; // lower limit\n", +"t2 = 2; // upper limit\n", +"dr = [derivat(x); derivat(y); derivat(z)]; // Infinitesimal displacement, m\n", +"dW = F*dr; // Work done or infinitesimally small displcement, J\n", +"work_exp = sci2exp(dW); // Convert the polynomial to the expression\n", +"W = integrate(work_exp, 't', t1, t2); // Total work done in moving the particle in a force field, J\n", +"printf('\nThe total work done in moving the particle in a force field = %d J', W);\n", +"// Result " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: Evaluation_of_force_integral.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex2.13: Page-80 (2008)\n", +"clc; clear;\n", +"x = poly(0, 'x');\n", +"y = x^2-4;\n", +"F = [x*y (x^2 + y^2)]; // Force acting on the particle, N\n", +"x1 = 2; // lower limit\n", +"x2 = 4; // upper limit\n", +"dr = [derivat(x); derivat(y);]; // Infinitesimal displacement, m\n", +"dW = F*dr; // Work done or infinitesimally small displcement, J\n", +"work_exp = sci2exp(dW); // Convert the polynomial to the expression\n", +"W = integrate(work_exp, 'x', x1, x2); // Total work done in moving the particle in a force field, J\n", +"printf('\nThe total work done in moving the particle in the x-y plane = %d J', W);\n", +"// Result \n", +"// The total work done in moving the particle in the x-y plane = 732 J " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.31: Electric_flux_through_a_surface_area.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex2.31: Page-93 (2008)\n", +"clc; clear;\n", +"E = [3 4 8]; // Coefficients of i, j and k in the electric field, N/C\n", +"S = [0; 0; 100]; // Coefficients of i, j and k in the area vector, Sq. m\n", +"phi_E = E*S; // Electric flux through the surface, N-Sq.m/C\n", +"printf('\nThe electric flux through the surface = %d N-Sq.m/C', phi_E);\n", +"// Result \n", +"// The electric flux through the surface = 800 N-Sq.m/C " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.32: Electric_flux_through_an_area_in_XY_plane.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex2.32: Page-93 (2008)\n", +"clc; clear;\n", +"E = [8 4 3]; // Coefficients of i, j and k in the electric field, N/C\n", +"S = [0; 0; 100]; // Coefficients of i, j and k in the area vector, Sq. m\n", +"phi_E = E*S; // Electric flux through the surface, N-Sq.m/C\n", +"printf('\nThe electric flux through the area in XY plane = %d N-Sq.m/C', phi_E);\n", +"// Result \n", +"// The electric flux through the area in XY plane = 300 N-Sq.m/C " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.33: Electric_flux_through_a_surface_in_YZ_plane.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex2.33: Page-93 (2008)\n", +"clc; clear;\n", +"E = [2 3 4]; // Coefficients of i, j and k in the electric field, N/C\n", +"S = [10; 0; 0]; // Coefficients of i, j and k in the area vector, Sq. m\n", +"phi_E = E*S; // Electric flux through the surface, N-Sq.m/C\n", +"printf('\nThe electric flux through the surface in YZ plane = %d N-Sq.m/C', phi_E);\n", +"// Result \n", +"// The electric flux through the surface in YZ plane = 20 N-Sq.m/C" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.39: Magnetic_field_due_to_a_straight_conductor_carrying_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex2.39: Page-96 (2008)\n", +"clc; clear;\n", +"mu_0 = 4*%pi*1e-007; // Absolute magnetic permeability of free space, N/ampere-square\n", +"I = 15; // Current through the wire, A\n", +"x = 1e-002; // Distance of observation point from the wire, m\n", +"B = mu_0/(4*%pi)*2*I/x; // Magnetic field at 1 cm distance, T\n", +"printf('\nThe magnetic field due to the current carrying wire at %d cm distance = %1.0e tesla', x/1e-002, B);\n", +"x = 5; // Distance of observation point from the infinite straight conductor, m\n", +"I = 100; // Current through the straight conductor, A\n", +"B = mu_0/(4*%pi)*2*I/x; // Magnetic field at 1 cm distance, T\n", +"printf('\nThe magnetic field due to the current carrying infinite straight conductor at %d m distance = %1.0e tesla', x, B);\n", +"// Result \n", +"// The magnetic field due to the current carrying wire at 1 cm distance = 3e-004 tesla\n", +"// The magnetic field due to the current carrying infinite straight conductor at 5 m distance = 4e-006 tesla " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.40: Force_between_two_current_carrying_straight_wires.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex2.40: Page-96 (2008)\n", +"clc; clear;\n", +"mu_0 = 4*%pi*1e-007; // Absolute magnetic permeability of free space, N/ampere-square\n", +"I1 = 30; // Current through the first wire, A \n", +"I2 = 40; // Current through the second wire, A \n", +"x = 2; // Separation distance between two wires, m\n", +"F = mu_0/(4*%pi)*2*I1*I2/x; // Force between two current carrying straight wires, N\n", +"printf('\nThe force between two current carrying straight wires = %3.1e N', F);\n", +"// Result\n", +"// The force between two current carrying straight wires = 1.2e-004 N " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |