diff options
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/2-Laser.ipynb')
-rw-r--r-- | Engineering_Physics_by_A_Marikani/2-Laser.ipynb | 332 |
1 files changed, 332 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/2-Laser.ipynb b/Engineering_Physics_by_A_Marikani/2-Laser.ipynb new file mode 100644 index 0000000..b663583 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/2-Laser.ipynb @@ -0,0 +1,332 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Laser" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: angular_spread_and_divergence.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.10.\n", +"// Page No.62.\n", +"clc;clear;\n", +"w = 632.8*10^(-9);//wavelength -[m]\n", +"D = 5;//Distance -[m].\n", +"d = 1*10^(-3);//Diameter -[m].\n", +"deltheta = (w/d);//Angular Spread.\n", +"printf('\nThe angular spread is %3.3e radian',deltheta);\n", +"r = (D*(deltheta));\n", +"r = (5*(deltheta));//Radius of the spread\n", +"printf('\nThe radius of the spread is %3.3e m',r); //Radius of the spread.\n", +"As = ((%pi)*r^(2));//Area of the spread\n", +"printf('\nThe area of the spread is %3.3e m^2',As);//Area of the spread.\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.1.\n", +"// Page No.59.\n", +"clc;clear;\n", +"p = 5*10^(-3);// output power -[W].\n", +"w = 632.8*10^(-9);//wavelength -[m].\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = (3*10^(8));//Velocity of light.\n", +"hv = ((h*c)/(w));// Energy of one photon\n", +"printf('\nThe energy of one photon in joules is %3.3e J', hv);\n", +"hv = hv/(1.6*10^(-19));\n", +"printf('\nThe energy of one photon in eV is %.2f eV',hv);\n", +"Np = (p/(3.14*10^(-19)));//Number of photons emitted\n", +"printf('\nThe number of photons emitted per second by He-Ne laser are %3.3e photons per second',Np);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Energy_of_the_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.2.\n", +"// Page No.60.\n", +"clc;clear;\n", +"w = 632.8*10^(-9);//wavelength -[m].\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = (3*10^(8));//Velocity of light.\n", +"E = ((h*c)/(w));// Energy of one photon\n", +"printf('\nThe energy of emitted photon in joules is %3.3e J',E);\n", +"E = E/(1.6*10^(-19));\n", +"printf('\nThe energy of emitted photon in eV is %.2f eV',E);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Energy_of_E3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.3.\n", +"// Page No.60.\n", +"clc;clear;\n", +"w = 1.15*10^(-6);//wavelength -[m].\n", +"h = 6.626*10^(-34);\n", +"c = (3*10^(8));\n", +"hv = ((h*c)/(w));// Energy of one photon\n", +"printf('\n The energy of emitted photon is %3.3e J',hv);\n", +"E = ((hv)/(1.6*10^(-19)));\n", +"printf('\n The energy of emitted photon is %.3f eV',E);\n", +"E1 = 0,'eV';//Value of first energy level.\n", +"E2 = 1.4,'eV';//Value of second energy level.\n", +"E3 = (E2+E);//Energy value of 'E3'.\n", +"E3 = ((1.4)+E);\n", +"printf('\n The value of E3 energy level is %.3f eV',E3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: wavelength_of_the_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.4;\n", +"//Page No.60;\n", +"clc;clear;\n", +"E1 = 3.2;//Value of higher energy level E1 -[eV].\n", +"E2 = 1.6;//Value of lower energy level E2 -[eV].\n", +"E = (E1-E2);//Energy difference.\n", +"printf('\nThe energy difference is %.1f eV', E);\n", +"h = 6.626*10^(-34);//Planck's constant\n", +"c = 3*10^(8);//Velocity of light.\n", +"E = 1.6*1.6*10^(-19);\n", +"w = ((h*c)/(E));\n", +"printf('\nThe wavelength of the photon is %3.3e m', w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: wavelength_of_the_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.5.\n", +"// Page No.60.\n", +"clc;clear;\n", +"E = 1.42;//Bandgap of Ga-As -[eV]\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = 3*10^(8);//Velocity of light.\n", +"w = ((h*c)/(E*1.6*10^(-19)));\n", +"printf('\nThe wavelength of the laser emitted by GaAs is %3.3e m',w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Relative_population_between.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.6.\n", +"// Page No.61.\n", +"clc;clear;\n", +"T = 300;//Temperature -[K]\n", +"K = 1.38*10^(-23);//Boltzman's constant.\n", +"w = 500*10^(-9);//wavelength -[m].\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = (3*10^(8));//velocity of light.\n", +"//By Maxwell's and Boltzman's law.\n", +"N = exp((h*c)/(w*K*T)); //Relative population.\n", +"printf('\nThe relative population between energy levels N1 and N2 is %3.3e',N);//(Relative population between N1 & N2)." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Ratio_between_stimulated_and_spontaneous_emission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.7.\n", +"// Page No.61.\n", +"clc;clear;\n", +"T = 300;//Temperature -[K]\n", +"K = 1.38*10^(-23);//Boltzman's constant\n", +"w = 600*10^(-9);//wavelength-[m]\n", +"h = 6.626*10^(-34);\n", +"v = (3*10^(8));//velocity.\n", +"S = (1/((exp((h*v)/(w*K*T)))-1));//Se=stimulated emission & SPe= spontaneous emission\n", +"printf('\nThe ratio between stimulated emission and spontaneous emission is %3.3e.\nTherefore, the stimulated emission is not possible in this condition.',S);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Efficiency_of_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.8.\n", +"// Page No.62.\n", +"clc;clear;\n", +"Op = 5*10^(-3);//Output power -[W].\n", +"I = 10*10^(-3);//Current -[A].\n", +"V = 3*10^(3);//Voltage -[V].\n", +"Ip = (10*10^(-3)*3*10^(3));//Input power.\n", +"Eff = (((Op)/(Ip))*(100));//Efficiency of the laser.\n", +"printf('\nThe efficiency of the laser is %.6f percent',Eff);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Intensity_of_the_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.9.\n", +"// Page No.62.\n", +"clc;clear;\n", +"P = 1*10^(-3);//Output power -[W].\n", +"D = 1*10^(-6);//Diameter -[m].\n", +"r = 0.5*10^(-6);//Radius -[m]\n", +"I = (P/(%pi*r^(2)));// Intensity of laser.\n", +"printf('\nThe intensity of the laser is %3.3e W/m^2',I);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |