summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A_Marikani/2-Laser.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/2-Laser.ipynb')
-rw-r--r--Engineering_Physics_by_A_Marikani/2-Laser.ipynb332
1 files changed, 332 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/2-Laser.ipynb b/Engineering_Physics_by_A_Marikani/2-Laser.ipynb
new file mode 100644
index 0000000..b663583
--- /dev/null
+++ b/Engineering_Physics_by_A_Marikani/2-Laser.ipynb
@@ -0,0 +1,332 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Laser"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: angular_spread_and_divergence.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.10.\n",
+"// Page No.62.\n",
+"clc;clear;\n",
+"w = 632.8*10^(-9);//wavelength -[m]\n",
+"D = 5;//Distance -[m].\n",
+"d = 1*10^(-3);//Diameter -[m].\n",
+"deltheta = (w/d);//Angular Spread.\n",
+"printf('\nThe angular spread is %3.3e radian',deltheta);\n",
+"r = (D*(deltheta));\n",
+"r = (5*(deltheta));//Radius of the spread\n",
+"printf('\nThe radius of the spread is %3.3e m',r); //Radius of the spread.\n",
+"As = ((%pi)*r^(2));//Area of the spread\n",
+"printf('\nThe area of the spread is %3.3e m^2',As);//Area of the spread.\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: number_of_photons_emitted_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.1.\n",
+"// Page No.59.\n",
+"clc;clear;\n",
+"p = 5*10^(-3);// output power -[W].\n",
+"w = 632.8*10^(-9);//wavelength -[m].\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"c = (3*10^(8));//Velocity of light.\n",
+"hv = ((h*c)/(w));// Energy of one photon\n",
+"printf('\nThe energy of one photon in joules is %3.3e J', hv);\n",
+"hv = hv/(1.6*10^(-19));\n",
+"printf('\nThe energy of one photon in eV is %.2f eV',hv);\n",
+"Np = (p/(3.14*10^(-19)));//Number of photons emitted\n",
+"printf('\nThe number of photons emitted per second by He-Ne laser are %3.3e photons per second',Np);\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Energy_of_the_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.2.\n",
+"// Page No.60.\n",
+"clc;clear;\n",
+"w = 632.8*10^(-9);//wavelength -[m].\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"c = (3*10^(8));//Velocity of light.\n",
+"E = ((h*c)/(w));// Energy of one photon\n",
+"printf('\nThe energy of emitted photon in joules is %3.3e J',E);\n",
+"E = E/(1.6*10^(-19));\n",
+"printf('\nThe energy of emitted photon in eV is %.2f eV',E);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Energy_of_E3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.3.\n",
+"// Page No.60.\n",
+"clc;clear;\n",
+"w = 1.15*10^(-6);//wavelength -[m].\n",
+"h = 6.626*10^(-34);\n",
+"c = (3*10^(8));\n",
+"hv = ((h*c)/(w));// Energy of one photon\n",
+"printf('\n The energy of emitted photon is %3.3e J',hv);\n",
+"E = ((hv)/(1.6*10^(-19)));\n",
+"printf('\n The energy of emitted photon is %.3f eV',E);\n",
+"E1 = 0,'eV';//Value of first energy level.\n",
+"E2 = 1.4,'eV';//Value of second energy level.\n",
+"E3 = (E2+E);//Energy value of 'E3'.\n",
+"E3 = ((1.4)+E);\n",
+"printf('\n The value of E3 energy level is %.3f eV',E3);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: wavelength_of_the_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.4;\n",
+"//Page No.60;\n",
+"clc;clear;\n",
+"E1 = 3.2;//Value of higher energy level E1 -[eV].\n",
+"E2 = 1.6;//Value of lower energy level E2 -[eV].\n",
+"E = (E1-E2);//Energy difference.\n",
+"printf('\nThe energy difference is %.1f eV', E);\n",
+"h = 6.626*10^(-34);//Planck's constant\n",
+"c = 3*10^(8);//Velocity of light.\n",
+"E = 1.6*1.6*10^(-19);\n",
+"w = ((h*c)/(E));\n",
+"printf('\nThe wavelength of the photon is %3.3e m', w);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: wavelength_of_the_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.5.\n",
+"// Page No.60.\n",
+"clc;clear;\n",
+"E = 1.42;//Bandgap of Ga-As -[eV]\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"c = 3*10^(8);//Velocity of light.\n",
+"w = ((h*c)/(E*1.6*10^(-19)));\n",
+"printf('\nThe wavelength of the laser emitted by GaAs is %3.3e m',w);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Relative_population_between.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.6.\n",
+"// Page No.61.\n",
+"clc;clear;\n",
+"T = 300;//Temperature -[K]\n",
+"K = 1.38*10^(-23);//Boltzman's constant.\n",
+"w = 500*10^(-9);//wavelength -[m].\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"c = (3*10^(8));//velocity of light.\n",
+"//By Maxwell's and Boltzman's law.\n",
+"N = exp((h*c)/(w*K*T)); //Relative population.\n",
+"printf('\nThe relative population between energy levels N1 and N2 is %3.3e',N);//(Relative population between N1 & N2)."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Ratio_between_stimulated_and_spontaneous_emission.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.7.\n",
+"// Page No.61.\n",
+"clc;clear;\n",
+"T = 300;//Temperature -[K]\n",
+"K = 1.38*10^(-23);//Boltzman's constant\n",
+"w = 600*10^(-9);//wavelength-[m]\n",
+"h = 6.626*10^(-34);\n",
+"v = (3*10^(8));//velocity.\n",
+"S = (1/((exp((h*v)/(w*K*T)))-1));//Se=stimulated emission & SPe= spontaneous emission\n",
+"printf('\nThe ratio between stimulated emission and spontaneous emission is %3.3e.\nTherefore, the stimulated emission is not possible in this condition.',S);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Efficiency_of_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.8.\n",
+"// Page No.62.\n",
+"clc;clear;\n",
+"Op = 5*10^(-3);//Output power -[W].\n",
+"I = 10*10^(-3);//Current -[A].\n",
+"V = 3*10^(3);//Voltage -[V].\n",
+"Ip = (10*10^(-3)*3*10^(3));//Input power.\n",
+"Eff = (((Op)/(Ip))*(100));//Efficiency of the laser.\n",
+"printf('\nThe efficiency of the laser is %.6f percent',Eff);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Intensity_of_the_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.2.9.\n",
+"// Page No.62.\n",
+"clc;clear;\n",
+"P = 1*10^(-3);//Output power -[W].\n",
+"D = 1*10^(-6);//Diameter -[m].\n",
+"r = 0.5*10^(-6);//Radius -[m]\n",
+"I = (P/(%pi*r^(2)));// Intensity of laser.\n",
+"printf('\nThe intensity of the laser is %3.3e W/m^2',I);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}