summaryrefslogtreecommitdiff
path: root/Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb')
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb203
1 files changed, 203 insertions, 0 deletions
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb
new file mode 100644
index 0000000..0ed6937
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb
@@ -0,0 +1,203 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Magnetically coupled circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Mutual_Inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.2\n",
+"disp('Given')\n",
+"disp('Input voltage is 10V')\n",
+"Viamp=10\n",
+"//From figure 13.7\n",
+"//Writing the left mesh equations\n",
+"disp('(1+10i)*I1-90i*I2=10')\n",
+"//Writing the right mesh equations \n",
+"disp('(400+1000i)*I2-90i*I1=0')\n",
+"i=%i\n",
+"A=[1+10*i -90*i;-90*i 400+1000*i]\n",
+"i2mat=[1+10*i 10; -90*i 0] \n",
+"//Find i2 \n",
+"i2=det(i2mat)/det(A)\n",
+"[mag Theta]=polar(i2)\n",
+"Theta=(Theta*180)/%pi\n",
+"//The value of resistor is 400 ohm\n",
+"R=400;\n",
+"//Let V=V2/V1\n",
+"Vamp=R*mag/Viamp\n",
+"printf('Ratio of output voltage to input is %3.2f with angle %3.2f degrees',Vamp,Theta);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: Energy_considerations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.4\n",
+"disp('Given')\n",
+"disp('L1=0.4H L2=2.5H k=0.6 i1=4i2=20*cos(500t-20)mA')\n",
+"L1=0.4;L2=2.5;k=0.6;\n",
+"disp('a)')\n",
+"t=0;\n",
+"i2=5*cos(500*t-(20*%pi)/180)\n",
+"printf('i2(0)=%3.2f mA \n',i2)\n",
+"disp('b)')\n",
+"M=k*sqrt(L1*L2)\n",
+"//v1(t)=L1*d/dt(i1)+M*d/dt(i2)\n",
+"v1=-L1*20*500*10^-3*sin(500*t-(20*%pi)/180)-M*5*500*10^-3*sin(500*t-(20*%pi)/180)\n",
+"printf('v1(0)=%3.2f V \n',v1)\n",
+"disp('c')\n",
+"//The total energy can be found as\n",
+"w=(L1*(4*i2)^2)/2+ (L2*(i2)^2)/2+M*(4*i2)*(i2)\n",
+"printf('w=%3.2f uJ \n',w)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: T_and_PI_equivalent_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.5\n",
+"printf('Given')\n",
+"disp('L1=30 mH L2=60 mH M=40 mH')\n",
+"L1=30*10^-3; L2=60*10^-3; M=40*10^-3;\n",
+"//The equivalent T network is \n",
+"UL=L1-M\n",
+"UR=L2-M\n",
+"CS=M\n",
+"printf('The T network has \n')\n",
+"printf('%d mH in the upper left arm\n',UL*10^3)\n",
+"printf('%3.0f mH in the upper right arm\n',UR*10^3)\n",
+"printf('%d mH in the center stem\n',CS*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6: T_and_PI_equivalent_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.6\n",
+"printf('Given')\n",
+"disp('L1=30 mH L2=60 mH M=40 mH')\n",
+"L1=30*10^-3; L2=60*10^-3; M=40*10^-3;\n",
+"//Let X=L1*L2-M^2\n",
+"X=L1*L2-M^2\n",
+"//The equivalent PI network is \n",
+"LA=X/(L2-M)\n",
+"LB=X/M\n",
+"LC=X/(L1-M)\n",
+"printf('The PI network has \n')\n",
+"printf('LA=%3.0f mH\n',LA*10^3)\n",
+"printf('LB=%3.0f mH \n',LB*10^3)\n",
+"printf('LC=%3.0f mH\n',LC*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.8: Equivalent_Circuits.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.8\n",
+"disp('Given')\n",
+"disp('Vin=50V Zg=100 ohm')\n",
+"Vin=50;Zg=100;\n",
+"//From figure 13.32\n",
+"disp('When the secondary circuit and ideal transformer is replaced by a Thevenin equivalent then the primary circuit sees a 100 ohm impedance')\n",
+"//The turns ratio is a\n",
+"a=10;\n",
+"disp('We place the secondary circuit and ideal transformer by a Thevenin equivalent circuit')\n",
+"Vth=-a*Vin\n",
+"Zth=(-a)^2*Zg\n",
+"printf('The secondary circuit has voltage source %d V rms with %d kohm resistance in series with it along with %d kohm load resistance',Vth,Zth*10^-3,10)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}