summaryrefslogtreecommitdiff
path: root/Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb')
-rw-r--r--Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb278
1 files changed, 278 insertions, 0 deletions
diff --git a/Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb b/Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb
new file mode 100644
index 0000000..30a3be0
--- /dev/null
+++ b/Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb
@@ -0,0 +1,278 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Fuel"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Calculating_GCV_and_NCV.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating GCV and NCV\n",
+"//Example 2.1\n",
+"clc\n",
+"clear\n",
+"C=60//percentage of Carbon in coal\n",
+"O=33//percentage of Oxygen in coal\n",
+"H=6//percentage of Hydrogen in coal\n",
+"S=0.5//percentage of Sulphur in coal\n",
+"N=0.5//percentage of Nitrogen in coal\n",
+"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n",
+"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n",
+"printf('Thus the higher calorific value of coal = %4.2f kcal/kg',GCV)\n",
+"printf('\n and the lower calorific value of coal = %4.2f kcal/kg',NCV)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Calculating_GCV_and_NCV.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating GCV and NCV\n",
+"//Example 2.2\n",
+"clc\n",
+"clear\n",
+"C=90//percentage of Carbon in coal\n",
+"O=2//percentage of Oxygen in coal\n",
+"H=4//percentage of Hydrogen in coal\n",
+"S=2.5//percentage of Sulphur in coal\n",
+"N=1//percentage of Nitrogen in coal\n",
+"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n",
+"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n",
+"printf('Thus the gross calorific value of coal = %4.2f kcal/kg',GCV)\n",
+"printf('\n and the net calorific value of coal = %4.2f kcal/kg',NCV)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Calculating_GCV_and_NCV.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating GCV and NCV\n",
+"//Example 2.3\n",
+"clc\n",
+"clear\n",
+"C=80//percentage of Carbon in coal\n",
+"O=3//percentage of Oxygen in coal\n",
+"H=7//percentage of Hydrogen in coal\n",
+"S=3.5//percentage of Sulphur in coal\n",
+"N=2.1//percentage of Nitrogen in coal\n",
+"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n",
+"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n",
+"printf('Thus the gross calorific value of coal = %4.0f kcal/kg',GCV)\n",
+"printf('\n and the net calorific value of coal = %4.0f kcal/kg',NCV)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Calculating_GCV_and_NCV.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating GCV and NCV\n",
+"//Example 2.4\n",
+"clc\n",
+"clear\n",
+"C=84//percentage of Carbon in coal\n",
+"O=8.4//percentage of Oxygen in coal\n",
+"H=5.5//percentage of Hydrogen in coal\n",
+"S=1.5//percentage of Sulphur in coal\n",
+"N=0.6//percentage of Nitrogen in coal\n",
+"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n",
+"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n",
+"printf('Thus the gross calorific value of coal = %4.0f kcal/kg',GCV)\n",
+"printf('\n and the net calorific value of coal = %4.0f kcal/kg',NCV)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Proximate_Analysis.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating proximate analysis\n",
+"//Example 2.5\n",
+"clc\n",
+"clear\n",
+"m1=1//mass of air dried coal in g\n",
+"m2=0.985//mass of dry coal residue after heating for 1hr in g\n",
+"m3=0.8//mass of residue after heating for 7min in g\n",
+"m4=0.1//mass of last residue\n",
+"Mm=m1-m2//mass of moisture in coal sample in g\n",
+"Mv=m2-m3//mass of volatile matter in g\n",
+"Ma=m4//mass of ash\n",
+"%m=Mm*100//percentage moisture\n",
+"%v=Mv*100//percentage of volatile matter\n",
+"%a=Ma*100//percentage of ash\n",
+"%c=100-(%m+%v+%a)//percentage of fixed carbon\n",
+"printf('Thus (i)percentage of moisture = %2.1f percent\n',%m)\n",
+"printf('(ii)percentage of volatile matter = %2.1f percent\n',%v)\n",
+"printf('(iii)percentage of ash = %2.0f percent\n',%a)\n",
+"printf('(iv)percentage of fixed carbon = %2.0f percent \n',%c)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Calculating_percentage_C_and_H.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating percentage C and H\n",
+"//Example 2.6\n",
+"clc\n",
+"clear\n",
+"wt1=2.75//increase in wt of KOH tube in gm\n",
+"wt2=0.45//increase in wt of CaCl2 tube in gm\n",
+"wt=1//weight of coal sample in gm\n",
+"%c=(wt1*12*100)/(wt*44)//percentage of carbon\n",
+"%h=(wt2*2*100)/(wt*18)//percentage of hydrogen\n",
+"printf('Thus (i)Percentage of carbon = %2.0f percent',%c)\n",
+"printf('\n(ii)Percentage of hydrogen =%2.0f percent',%h)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Calculating_percentage_S_and_N.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating percentage S and N\n",
+"//Example 2.7\n",
+"clc\n",
+"clear\n",
+"wt1=2.6//weight of coal taken for quantitative analysis in gm\n",
+"wt=1.56//weight of coal sample taken in gm\n",
+"v=50-6.25//volume of H2SO4 used\n",
+"N=0.1//normality\n",
+"m=0.1755//wt of BaSO4 ppt. obtained \n",
+"%n=(v*N*1.4)/(wt)//percentage of nitrogen\n",
+"%su=(m*32*100)/(wt1*233)//percentage of sulphur\n",
+"printf('Thus (i)Percentage of nitrogen = %2.3f percent',%n)\n",
+"printf('\n(ii)Percentage of sulphur =%2.3f percent',%su)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Calculating_percentage_S.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//calculating percentage S\n",
+"//Example 2.8\n",
+"clc\n",
+"clear\n",
+"wt=0.5//weight of coal taken for quantitative analysis in gm\n",
+"m=0.05//wt of BaSO4 ppt. obtained \n",
+"%su=(m*32*100)/(wt*233)//percentage of sulphur\n",
+"printf('Thus Percentage of sulphur =%2.3f percent',%su)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}