diff options
Diffstat (limited to 'Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb')
-rw-r--r-- | Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb | 278 |
1 files changed, 278 insertions, 0 deletions
diff --git a/Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb b/Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb new file mode 100644 index 0000000..30a3be0 --- /dev/null +++ b/Engineering_Chemistry_by_P_N_Dave_and_S_G_Pillai/2-Fuel.ipynb @@ -0,0 +1,278 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Fuel" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Calculating_GCV_and_NCV.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating GCV and NCV\n", +"//Example 2.1\n", +"clc\n", +"clear\n", +"C=60//percentage of Carbon in coal\n", +"O=33//percentage of Oxygen in coal\n", +"H=6//percentage of Hydrogen in coal\n", +"S=0.5//percentage of Sulphur in coal\n", +"N=0.5//percentage of Nitrogen in coal\n", +"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n", +"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n", +"printf('Thus the higher calorific value of coal = %4.2f kcal/kg',GCV)\n", +"printf('\n and the lower calorific value of coal = %4.2f kcal/kg',NCV)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Calculating_GCV_and_NCV.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating GCV and NCV\n", +"//Example 2.2\n", +"clc\n", +"clear\n", +"C=90//percentage of Carbon in coal\n", +"O=2//percentage of Oxygen in coal\n", +"H=4//percentage of Hydrogen in coal\n", +"S=2.5//percentage of Sulphur in coal\n", +"N=1//percentage of Nitrogen in coal\n", +"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n", +"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n", +"printf('Thus the gross calorific value of coal = %4.2f kcal/kg',GCV)\n", +"printf('\n and the net calorific value of coal = %4.2f kcal/kg',NCV)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Calculating_GCV_and_NCV.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating GCV and NCV\n", +"//Example 2.3\n", +"clc\n", +"clear\n", +"C=80//percentage of Carbon in coal\n", +"O=3//percentage of Oxygen in coal\n", +"H=7//percentage of Hydrogen in coal\n", +"S=3.5//percentage of Sulphur in coal\n", +"N=2.1//percentage of Nitrogen in coal\n", +"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n", +"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n", +"printf('Thus the gross calorific value of coal = %4.0f kcal/kg',GCV)\n", +"printf('\n and the net calorific value of coal = %4.0f kcal/kg',NCV)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Calculating_GCV_and_NCV.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating GCV and NCV\n", +"//Example 2.4\n", +"clc\n", +"clear\n", +"C=84//percentage of Carbon in coal\n", +"O=8.4//percentage of Oxygen in coal\n", +"H=5.5//percentage of Hydrogen in coal\n", +"S=1.5//percentage of Sulphur in coal\n", +"N=0.6//percentage of Nitrogen in coal\n", +"GCV=((8080*C)+(34500*(H-O/8))+(2240*S))/100//gross calorific value in kcal/kg\n", +"NCV=(GCV-(0.09*H*587))//net calorific value in kcal/kg\n", +"printf('Thus the gross calorific value of coal = %4.0f kcal/kg',GCV)\n", +"printf('\n and the net calorific value of coal = %4.0f kcal/kg',NCV)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Proximate_Analysis.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating proximate analysis\n", +"//Example 2.5\n", +"clc\n", +"clear\n", +"m1=1//mass of air dried coal in g\n", +"m2=0.985//mass of dry coal residue after heating for 1hr in g\n", +"m3=0.8//mass of residue after heating for 7min in g\n", +"m4=0.1//mass of last residue\n", +"Mm=m1-m2//mass of moisture in coal sample in g\n", +"Mv=m2-m3//mass of volatile matter in g\n", +"Ma=m4//mass of ash\n", +"%m=Mm*100//percentage moisture\n", +"%v=Mv*100//percentage of volatile matter\n", +"%a=Ma*100//percentage of ash\n", +"%c=100-(%m+%v+%a)//percentage of fixed carbon\n", +"printf('Thus (i)percentage of moisture = %2.1f percent\n',%m)\n", +"printf('(ii)percentage of volatile matter = %2.1f percent\n',%v)\n", +"printf('(iii)percentage of ash = %2.0f percent\n',%a)\n", +"printf('(iv)percentage of fixed carbon = %2.0f percent \n',%c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Calculating_percentage_C_and_H.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating percentage C and H\n", +"//Example 2.6\n", +"clc\n", +"clear\n", +"wt1=2.75//increase in wt of KOH tube in gm\n", +"wt2=0.45//increase in wt of CaCl2 tube in gm\n", +"wt=1//weight of coal sample in gm\n", +"%c=(wt1*12*100)/(wt*44)//percentage of carbon\n", +"%h=(wt2*2*100)/(wt*18)//percentage of hydrogen\n", +"printf('Thus (i)Percentage of carbon = %2.0f percent',%c)\n", +"printf('\n(ii)Percentage of hydrogen =%2.0f percent',%h)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Calculating_percentage_S_and_N.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating percentage S and N\n", +"//Example 2.7\n", +"clc\n", +"clear\n", +"wt1=2.6//weight of coal taken for quantitative analysis in gm\n", +"wt=1.56//weight of coal sample taken in gm\n", +"v=50-6.25//volume of H2SO4 used\n", +"N=0.1//normality\n", +"m=0.1755//wt of BaSO4 ppt. obtained \n", +"%n=(v*N*1.4)/(wt)//percentage of nitrogen\n", +"%su=(m*32*100)/(wt1*233)//percentage of sulphur\n", +"printf('Thus (i)Percentage of nitrogen = %2.3f percent',%n)\n", +"printf('\n(ii)Percentage of sulphur =%2.3f percent',%su)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Calculating_percentage_S.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//calculating percentage S\n", +"//Example 2.8\n", +"clc\n", +"clear\n", +"wt=0.5//weight of coal taken for quantitative analysis in gm\n", +"m=0.05//wt of BaSO4 ppt. obtained \n", +"%su=(m*32*100)/(wt*233)//percentage of sulphur\n", +"printf('Thus Percentage of sulphur =%2.3f percent',%su)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |