summaryrefslogtreecommitdiff
path: root/Elements_of_Mechanical_Engineering_by_R_K_Rajput/7-Internal_Combustion_Engines.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Elements_of_Mechanical_Engineering_by_R_K_Rajput/7-Internal_Combustion_Engines.ipynb')
-rw-r--r--Elements_of_Mechanical_Engineering_by_R_K_Rajput/7-Internal_Combustion_Engines.ipynb743
1 files changed, 743 insertions, 0 deletions
diff --git a/Elements_of_Mechanical_Engineering_by_R_K_Rajput/7-Internal_Combustion_Engines.ipynb b/Elements_of_Mechanical_Engineering_by_R_K_Rajput/7-Internal_Combustion_Engines.ipynb
new file mode 100644
index 0000000..82af122
--- /dev/null
+++ b/Elements_of_Mechanical_Engineering_by_R_K_Rajput/7-Internal_Combustion_Engines.ipynb
@@ -0,0 +1,743 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Internal Combustion Engines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"n=4; //no. of cylinders\n",
+"BP=30; //Brake Power in kW\n",
+"N=2500; //engine speed in R.P.M.\n",
+"Pmi=8; //mean effective pressure in bar\n",
+"ETAm=0.8; //mechanical efficiency\n",
+"ETAthb=0.28; //brake thermal efficiency\n",
+"C=43900; //calorific value of fuel used in kJ/kg\n",
+"k=1; //for 2-stroke cylinder\n",
+"\n",
+"//mechanical efficiency, ETAm=BP/IP\n",
+"IP=BP/ETAm;\n",
+"//INDICTED POWER ,I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"//L=1.5D,\n",
+"D=((6*IP)/(10*k*N*n*Pmi*1.5*(%pi/4)))^(1/3); //bore diameter in m\n",
+"L=1.5*D; //length of stroke in m\n",
+"//Brake thermal efficiency, ETAtb=BP/(Mf*C)\n",
+"Mf=BP/(ETAthb*C); //fuel consumption in kg/hr\n",
+"\n",
+"printf(' (i) The Bore diameter is: %5.3f m or %2.0f mm.\n',D,(D*1000));\n",
+"printf(' The Stoke length is: %2.0f mm.\n',(L*1000));\n",
+"printf(' (ii) The Fuel consumption is: %5.5f kg/s or %3.2f kg/hr. \n',Mf,(Mf*3600));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"n=6; //no. of cylinders\n",
+"Pdisp=700; //piston disp per cylinder in cm^3\n",
+"P=78; //power developed in kW\n",
+"N=3200; //engine speed in R.P.M.\n",
+"Mf=27; //mass of fuel used in kg/hr\n",
+"C=44000; //calorific value of fuel used in kJ/kg\n",
+"afr=12; //air fuel ratio\n",
+"Pa=0.9; //intake air pressure in bar\n",
+"Ta=32+273; //intake air tempertaure in K\n",
+"R=0.287; //gas constant for air in kJ/kgK\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"Ma=afr*Mf; //mass of air\n",
+"//by eq. pa*Va=Ma*R*Ta\n",
+"Va=Ma*R*Ta/Pa/100; //volume of intake air in m^3/hr\n",
+"Vswept=(Pdisp/10^6)*n*(N/2)*60; //volume swept in m^3/hr\n",
+"ETAvol=Va/Vswept; //volumetric efficiency\n",
+"\n",
+"//Brake thermal efficiency , ETAbt=brake work/heat supplied by the fuel\n",
+"ETAbt=P/(Mf*C/3600);\n",
+"//Brake Power, BP = (2*pi)N*Tb/(60*1000) kW\n",
+"Tb=P*60/(2*%pi*N); //brake torque in kNm\n",
+"\n",
+"printf(' (i) The Volumetric efficiency is: %5.3f or %5.1f percent. \n',ETAvol,(ETAvol*100));\n",
+"printf(' (ii) The Brake thermal efficiency is: %5.4f or %5.2f percent. \n',ETAbt,(ETAbt*100));\n",
+"printf(' (iii) The Brake Torque is: %5.4f kNm. \n',Tb);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12: Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"//L=1.5D\n",
+"n=6; //no. of cylinders\n",
+"Vs=1.75; //stroke volume in litres\n",
+"IP=26.3; //power developed in kW\n",
+"Ne=504; //engine speed in R.P.M.\n",
+"Pmi=6; //mean effective pressure in bar\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"//INDICTED POWER ,I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"//L*A=Vs\n",
+"Na=IP*6/(n*Pmi*(Vs/10^3)*k*10); //actual speed in R.P.M\n",
+"Fa=Na*n*k; //actual no. of fires in one minute\n",
+"Fe=Ne*n/2; //expected no. of fires in one minute\n",
+"Fm=Fe-Fa; //misfires per minute\n",
+"Fmavg=Fm/n; //avg. no. of times each cylinder misfires in one minute\n",
+"\n",
+"printf('The Average no. of times each cylinder misfires in one minute is: %1.0f.\n',Fmavg);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: Example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"D=0.075; //bore in m\n",
+"L=0.09; //stroke length in m\n",
+"n=4; //no. of cylinders\n",
+"erar=39/8; //engine to rear axle ratio =39:8\n",
+"Dw=0.65; //wheel diameter with tyre fully inflated in m\n",
+"Fc=0.227; //petrol consumption for a distance of 3.2 km at a speed of 48 km/hr\n",
+"Pmi=5.625; //mean effective pressure in bar\n",
+"C=43470; //calorific value of fuel used in kJ/kg\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"s=48*1000/60; //speed of car in m/min\n",
+"//if Nt rev are made by tyre per minute, speed=pi*Dw*Nt\n",
+"Nt=s/(%pi*Dw); //R.P.M.\n",
+"//as engine to rear axle ratio is 39:8\n",
+"Ne=erar*Nt; //speed of enfine shaft in R.P.M.\n",
+"//INDICTED POWER ,I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"A=(%pi/4)*(D^2);\n",
+"IP=(n*Pmi*L*A*Ne*k*10)/6;\n",
+"\n",
+"s=s/1000; //speed of car in km/min\n",
+"t=3.2/s; //time in min for covering 3.2 km \n",
+"//petrol consumption for a distance of 3.2 km aat a speed of 48 km/hr is 0.227kg\n",
+"Mf=Fc/(t*60); //fuel consumed per sec\n",
+"ETAthi=IP/(Mf*C); //Indicated fuel efficiency\n",
+"\n",
+"printf(' (i) The Indicated Power developed is: %5.2f kW. \n',IP);\n",
+"printf(' (ii) The Indicated thermal efficiency is: %1.3f or %2.1f percent. \n',ETAthi,(ETAthi*100));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14: Example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"D=0.25; //cylinder diameter in m\n",
+"L=0.4; //stroke length in m\n",
+"Pmg=7; //Gross mean effective pressure in bar\n",
+"Pmp=0.5; //Pumping mean effective pressure in bar\n",
+"N=250; //engine speed in R.P.M.\n",
+"NBL=1080; //net load on the brake (W-S) in N\n",
+"Db=1.5; //effective diameter of the brake in m\n",
+"Fc=10; //fuel used per hr in kg\n",
+"C=44300; //calorific value of fuel used in kJ/kg\n",
+"n=1; //no. of cylinders\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"//INDICTED POWER ,I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"Pm=Pmg-Pmp;\n",
+"A=(%pi/4)*(D^2);\n",
+"IP=(n*Pm*L*A*N*k*10)/6;\n",
+"BP=NBL*(%pi)*(Db)*N/(60*1000);\n",
+"ETAm=BP/IP; //mechanical efficiency\n",
+"Mf=Fc/3600;\n",
+"ETAthi=IP/(Mf*C); //Indicated thermal efficiency\n",
+"\n",
+"printf(' (i) The Indicated Power, I.P. is: %5.2f kW. \n',IP);\n",
+"printf(' (ii) The Brake Power, B.P. is: %2.1f kW. \n',BP);\n",
+"printf('(iii) Mechanical efficiency is: %5.3f or %2.1f percent.\n',ETAm,(ETAm*100));\n",
+"printf(' (iv) Indicated thermal efficiency is: %5.3f or %2.1f percent.\n',ETAthi,(ETAthi*100));\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15: Example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"ETAthb=30; //Brake thermal efficiency in %\n",
+"afr=20; //air fuel ratio by weight\n",
+"C=41800; //calorific value of fuel used in kJ/kg\n",
+"\n",
+"//Brake thermal efficiency, ETAthb=work produced/heat supplied\n",
+"work=(ETAthb/100)*C; //work produced per kg of fuel\n",
+"//STP conditions refer to 1.0132 bar and 15 deg celsius\n",
+"m=afr; //mass of air per kg of fuel\n",
+"R=287;\n",
+"V=m*R*(15+273)/(1.0132*10^5); //volume of air used\n",
+"//Brake mean effective pressure, Pmb=work done/cylinder volume\n",
+"Pmb=(work*1000)/(V*10^5);\n",
+"\n",
+"printf('The Brake mean effective pressure, Pmb is: %2.2f bar.\n',Pmb);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16: Example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"V1=0.216; //gas consumption in m^3/min\n",
+"P1=75; //gas temperature in mm of water\n",
+"T1=17+273; //gas tempertaure in K\n",
+"m=2.84; //air consumption in kg/min\n",
+"Ta=17+273; //air tempertaure in K\n",
+"br=745; //barometer reading in mm of Hg\n",
+"D=0.25; //bore of engine cylinder in m\n",
+"L=0.475; //stroke length in m\n",
+"N=240; //engine speed in R.P.M.\n",
+"R=287; //gas constant for air in J/kgK\n",
+"n=1; //no. of cylinders\n",
+"k=1; //for 2-stroke cylinder\n",
+"\n",
+"P1=br+P1/13.6; //pressure of the gas\n",
+"//at NTP\n",
+"P2=760; //mm of Hg\n",
+"T2=0+273; //in K\n",
+"//P1*V1/T1=P2*V2/T2\n",
+"V2=P1*V1*T2/(P2*T1); //volume of gas used at NTP in m^3\n",
+"Vg=V2/(N/2); //gas used per stroke in m^3\n",
+"\n",
+"//PV=mRT\n",
+"P2=1.0132*10^5;\n",
+"V=m*R*T2/P2; //volume occupied by air in m^3/min\n",
+"Va=V/(N/2); //air used per stroke in m\n",
+"\n",
+"Vmix=Vg+Va; //mixture of gas and air in m^3\n",
+"\n",
+"//ETAvol=(actual volume of mixture drawn per stroke at NTP)/(swept volume of system)\n",
+"ETAvol=Vmix/((%pi/4)*D^2*L);\n",
+"\n",
+"printf(' The Volumetric efficiency is: %3.3f or %3.1f percent. \n',ETAvol,(ETAvol*100));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.17: Example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"t=1; //duration of trial in hr\n",
+"N=14000; //revolutions\n",
+"mc=500; //no. of missed cycles\n",
+"NBL=1470; //Net brake load (W-S) in N\n",
+"Pmi=7.5; //mean effective pressure in bar\n",
+"Vg=20000/3600; //gas consumption in litres/s\n",
+"C=21; //LCV of gas at sipply conditions in kJ/litre\n",
+"D=0.25; //cylinder diameter in m\n",
+"L=0.4; //stroke length in m\n",
+"Cb=4; //effective brake circumference in m\n",
+"r=6.5; //compression ratio\n",
+"n=1; //no. of cylinders\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"//gamma for air, g=1.4\n",
+"g=1.4;\n",
+"\n",
+"//INDICTED POWER ,I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"Nk=(N*k-mc)/60; //(N*k)-working cycles/min\n",
+"A=(%pi/4)*(D^2);\n",
+"IP=(n*Pmi*L*A*Nk*10)/6;\n",
+"N=N/60;\n",
+"BP=NBL*(Cb)*N/(60*1000);\n",
+"eta=BP/IP; //mechanical efficiency\n",
+"ETAthi=IP/(Vg*C); //Indicated thermal efficiency\n",
+"\n",
+"//relative efficiency, ETArel=ETAthi/ETAas\n",
+"//ETAas=1-1/(r^(g-1))\n",
+"ETAas=1-1/(r^(g-1)); //air-standard efficiency\n",
+"ETArel=ETAthi/ETAas; //relative efficiency\n",
+"\n",
+"printf(' (i) The Indicated Power, I.P. is: %5.2f kW. \n',IP);\n",
+"printf(' (ii) The Brake Power, B.P. is: %5.2f kW. \n',BP);\n",
+"printf(' (iii) Mechanical efficiency is: %5.3f or %2.1f percent.\n',eta,(eta*100));\n",
+"printf(' (iv) The Indicated thermal efficiency is: %2.2f or %2.0f percent. \n',ETAthi,(ETAthi*100));\n",
+"printf(' (v) The Relative efficiency is: %2.3f or %2.1f percent. \n',ETArel,(ETArel*100));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"Pmi=6; //mean effective pressure in bar\n",
+"N=1000; //engine speed in R.P.M.\n",
+"D=0.11; //diameter of piston in m\n",
+"L=0.14; //stroke length in m\n",
+"n=1; //no. of cylinders\n",
+"k=1; //for 2-stroke cylinder\n",
+"\n",
+"//INDICTED POWER ,I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"A=(%pi/4)*(D^2);\n",
+"IP=(n*Pmi*L*A*N*k*10)/6;\n",
+"\n",
+"printf('The Indicted Power developed is: %2.1f kW.',IP);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"//L=1.5D\n",
+"n=4; //no. of cylinders\n",
+"P=14.7; //power developed in kW\n",
+"N=1000; //engine speed in R.P.M.\n",
+"Pmi=5.5; //mean effective pressure in bar\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"//INDICTED POWER, I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"//A=(pi/4)*D^2,\n",
+"//L=1.5D,\n",
+"D=((6*P)/(10*k*N*n*Pmi*1.5*(%pi/4)))^(1/3); //bore diameter in m\n",
+"L=1.5*D; //length of stroke in m\n",
+"\n",
+"printf('The Bore diameter is: %5.2f mm.\n',(D*1000));\n",
+"printf(' The Stoke length is: %5.2f mm.\n',(L*1000));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"Db=0.6; //diameter of brake wheel in m\n",
+"d=0.026; //diameter of rope in m\n",
+"W=200; //dead load on the brake in N\n",
+"S=30; //spring balance reading in N\n",
+"N=450; //engine speed in R.P.M.\n",
+"\n",
+"//Brake Power, B.P.=(W-S)(pi)(Db+d)N/(60*1000) kW\n",
+"BP=(W-S)*(%pi)*(Db+d)*N/(60*1000);\n",
+"\n",
+"printf('The Brake Power, B.P. is: %2.1f kW.\n',BP);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"T=175; //torque due to brake load in Nm\n",
+"N=500; //engine speed in R.P.M.\n",
+"\n",
+"//Brake Power, BP = (2*pi)NT/(60*1000) kW\n",
+"BP = (2*%pi)*N*T/(60*1000); \n",
+"\n",
+"printf('The Brake Power, B.P. is: %4.2f kW.\n',BP);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"D=0.3; //bore of engine cylinder in m\n",
+"L=0.45; //stroke length in m\n",
+"N=300; //engine speed in R.P.M.\n",
+"Pmi=6; //mean effective pressure in bar\n",
+"NBL=1.5; //Net brake load (W-S) in kN\n",
+"Db=1.8; //diameter of brake drum\n",
+"d=0.02; //brake rope diameter\n",
+"n=1; //no. of cylinders\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"//INDICTED POWER ,I.P.=(n*PMI*l*A*N*k*10)/6 kW\n",
+"A=(%pi/4)*(D^2);\n",
+"IP=(n*Pmi*L*A*N*k*10)/6;\n",
+"BP=NBL*(%pi)*(Db+d)*N/(60);\n",
+"eta=BP/IP; //mechanical efficiency\n",
+"\n",
+"printf(' (i) The Indicted Power, I.P. is: %5.2f kW. \n',IP);\n",
+"printf(' (ii) The Brake Power, B.P. is: %5.2f kW. \n',BP);\n",
+"printf('(iii) Mechanical efficiency is: %5.4f or %5.2f percent.\n',eta,(eta*100));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"D=0.2; //diameter of engine cylinder in m\n",
+"L=0.350; //length of stroke in m\n",
+"Pmico=6.5; //mean effective pressure on cover side in bar\n",
+"Pmicr=7; //mean effective pressure on crank side in bar\n",
+"N=420; //engine speed in R.P.M.\n",
+"Drod=0.02; //diameter of piston rod in m\n",
+"W=1370; //dead load on the brake in N\n",
+"S=145; //spring balance reading in N\n",
+"Db=1.2; //diameter of brake wheel in m\n",
+"d=0.02; //diameter of rope in m\n",
+"n=1; //no. of cylinders\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"//INDICTED POWER ,I.P.=(n*Pmi*l*A*N*k*10)/6 kW\n",
+"Aco=(%pi/4)*(D^2); //area of cylinder om cover end in m^2\n",
+"Acr=(%pi/4)*(D^2-Drod^2); //area of cylinder om crank end in m^2\n",
+"IPco=(n*Pmico*L*Aco*N*k*10)/6; //IP on cover end side in kW\n",
+"IPcr=(n*Pmicr*L*Acr*N*k*10)/6; //IP on crank end side in kW\n",
+"IPtotal=IPco+IPcr; //IP total in kW\n",
+"\n",
+"//Brake Power, B.P.=(W-S)(pi)(Db+d)N/(60*1000) kW\n",
+"BP=(W-S)*(%pi)*(Db+d)*N/(60*1000);\n",
+"\n",
+"eta=BP/IPtotal; //mechanical efficiency\n",
+"\n",
+"printf('Mechanical efficiency is: %5.4f or %5.2f percent.\n',eta,(eta*100));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"IP=30; //indicted power in kW\n",
+"BP=26; //Brake Power in kW\n",
+"N=1000; //engine speed in R.P.M.\n",
+"F=0.35; //fuel per brake power hour in kg/BP/h\n",
+"C=43900; //calorific value of fuel used in kJ/kg\n",
+"\n",
+"Fc=F*BP; //fuel consumption per hour \n",
+"Mf=Fc/3600;\n",
+"ETAti=IP/(Mf*C); //Indicted thermal eficiency\n",
+"ETAtb=BP/(Mf*C); //Brake thermal efficiency\n",
+"ETAm=BP/IP; //Mechanical efficiency\n",
+"\n",
+"printf(' (i) The Indicted thermal eficiency is: %5.3f or %2.1f percent. \n',ETAti,(ETAti*100));\n",
+"printf(' (ii) The Brake thermal efficiency is: %5.3f or %2.1f percent. \n',ETAtb,(ETAtb*100));\n",
+"printf('(iii) Mechanical efficiency is: %5.3f or %2.1f percent. \n',ETAm,(ETAm*100));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"Db=0.75; //diameter of brake pulley in m\n",
+"d=0.05; //diameter of rope in m\n",
+"W=400; //dead load on the brake in N\n",
+"S=50; //spring balance reading in N\n",
+"Fc=4.2; //fuel consumption in kg/hr\n",
+"N=1000; //rated engine speed in R.P.M.\n",
+"C=43900; //calorific value of fuel used in kJ/kg\n",
+"n=1; //no. of cylinders\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"\n",
+"//Brake Power, B.P.=(W-S)(pi)(Db+d)N/(60*1000) kW\n",
+"BP=(W-S)*(%pi)*(Db+d)*N/(60*1000);\n",
+"sfc=Fc/BP; //brake specific fuel consumption in kg/kWhr\n",
+"Mf=Fc/3600;\n",
+"ETAtb=BP/(Mf*C); //Brake thermal efficiency\n",
+"\n",
+"printf(' (i) The Brake specific fuel consumption, s.f.c (brake) is: %5.3f kg/kWh. \n',sfc);\n",
+"printf(' (ii) The Brake thermal efficiency is: %5.3f or %2.1f percent. \n',ETAtb,(ETAtb*100));\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//DATA GIVEN\n",
+"n=6; //no. of cylinders\n",
+"D=0.09; //bore of each cylinder in m\n",
+"L=0.1; //length of stroke in m\n",
+"r=7; //compression ratio\n",
+"ETArel=0.55; //relative efficiency\n",
+"Fsc=0.3; //indicated specific fuel consumption in kg/kWh\n",
+"Pmi=8.6; //indicated mean effective pressure in bar\n",
+"N=2500; //engine speed in R.P.M.\n",
+"k=0.5; //for 4-stroke cylinder\n",
+"\n",
+"//Air standard efficiency, ETAair=1-1/(r^(gamma-1))\n",
+"g=1.4; //gamma of air=1.4\n",
+"ETAair=1-1/(r^(g-1));\n",
+"//Indicated thermal efficiency, ETArel=ETAthi/ETAair;\n",
+"ETAthi=ETArel*ETAair;\n",
+"//Indicted thermal eficiency, ETAthi=IP/(Mf*C)\n",
+"Mf=Fsc/3600;\n",
+"//taking IP=1,\n",
+"C=1/(ETAthi*Mf); //calorific value in kJ/kg\n",
+"//INDICTED POWER ,I.P.=(n*Pmi*l*A*N*k*10)/6 kW\n",
+"A=(%pi/4)*(D^2);\n",
+"IP=(n*Pmi*L*A*N*k*10)/6;\n",
+"Fc=Fsc*IP; //total fuel consumption in kg/hr\n",
+"\n",
+"printf(' (i) The Calorific value of coal, C is: %5.0f kJ/kg. \n',C);\n",
+"printf(' (ii) The Fuel consumption is: %5.2f kg/h. \n',Fc);\n",
+"\n",
+"//NOTE:\n",
+"//ans of calorific value here is exact, while in TB its rounded off value"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}