diff options
Diffstat (limited to 'Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb')
-rw-r--r-- | Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb | 275 |
1 files changed, 275 insertions, 0 deletions
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb new file mode 100644 index 0000000..7ccd74f --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb @@ -0,0 +1,275 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Principles of chemical equilibrium" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"G=-31 //kJ/mol\n", +"T=37+273 //K\n", +"Cadp=10^-3 //mmol/L\n", +"Cp=8*10^-3 //mmol/L\n", +"Catp=8*10^-3 //mmol/L\n", +"R=8.314 //J/K mol\n", +"//calculations\n", +"Q=Cadp*Cp/Catp\n", +"deltaG=G+R*T*log(Q) /1000.\n", +"//results\n", +"printf('Reaction Gibbs energy = %d kJ/mol',deltaG-1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Hr=-285.83 //kJ/mol\n", +"Sr=-163.34 //J/ K mol\n", +"T=298.15 //K\n", +"//calculations\n", +"Gr=Hr-T*Sr/1000.\n", +"//results\n", +"printf('Gibbs energy = %.2f kJ/mol',Gr)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Gr=-3.40 //kJ/mol\n", +"R=8.314 //J/k mol\n", +"T=298 //K\n", +"//calculations\n", +"lnK=Gr*10^3/(R*T)\n", +"K=exp(lnK)\n", +"//results\n", +"printf('Equilibrium constant K= %.2f',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"aADP=1 //mol/L\n", +"aP=1 //mol/L\n", +"aATP=1 //mol/L\n", +"aH2O=1 //mol/L\n", +"aH=10^-7 //mol/L\n", +"G=10 //kJ/mol\n", +"T=298 //K\n", +"R=8.314 //J/K mol\n", +"//calculations\n", +"Q=aADP*aP*aH/(aATP*aH2O)\n", +"Gr=G+R*T*log(Q)/1000.\n", +"//results\n", +"printf('Change in nGibbs energy =%d kJ/mol',Gr-1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_i: illustration_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Hr=178 //kJ/mol\n", +"Sr=161 //J/K mol\n", +"//calculations\n", +"T=Hr*10^3 /Sr\n", +"//results\n", +"printf('Decompostion temperature = %.2e K',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4_e: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Gr=1.7*10^3 //J/mol\n", +"T=298 //K\n", +"R=8.314 //J/K mol\n", +"K=0.5\n", +"//calculations\n", +"GbyRT=Gr/(R*T)\n", +"feq=K/(K+1)\n", +"//results\n", +"printf('Equivalent fraction = %.2f ',feq)\n", +"disp('For the second part, Gr=1.7 + 2.48 ln(f/1-f)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4_i: illustration_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"GCO2=-394 //kJ/mol\n", +"GCO=-137 //kJ/mol\n", +"GO2=0\n", +"//calculations\n", +"deltaG=2*GCO2-2*GCO+GO2\n", +"//results\n", +"printf('Standard reaction gibbs energy = %d kJ/mol',deltaG)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5_e: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"species=['N2' 'H2' 'NH3']\n", +"change=['-x' '-3x' '2x']\n", +"E=['1-x' '3-3x' '2x']\n", +"disp('Concentration table')\n", +"disp(species)\n", +"disp(change)\n", +"disp(E)\n", +"K=977\n", +"//Calculations\n", +"g=sqrt(27*K/4)\n", +"x=poly(0,'x');\n", +"vector=roots(g*x^2 -(2*g +1)*x +g)\n", +"sol=vector(2)\n", +"PN2=1-sol\n", +"PH2=3-3*sol\n", +"PNH3=2*sol\n", +"K=PNH3^2/(PH2^3 *PN2)\n", +"//results\n", +"printf('Pressure of N2 gas =%.2f bar',PN2)\n", +"printf('\n Pressure of H2 gas =%.2f bar',PH2)\n", +"printf('\n Pressure of NH3 gas =%.2f bar',PNH3)\n", +"printf('\n K final = %.1e> it is close to original value.',K)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |