summaryrefslogtreecommitdiff
path: root/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb')
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb275
1 files changed, 275 insertions, 0 deletions
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb
new file mode 100644
index 0000000..7ccd74f
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb
@@ -0,0 +1,275 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Principles of chemical equilibrium"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"G=-31 //kJ/mol\n",
+"T=37+273 //K\n",
+"Cadp=10^-3 //mmol/L\n",
+"Cp=8*10^-3 //mmol/L\n",
+"Catp=8*10^-3 //mmol/L\n",
+"R=8.314 //J/K mol\n",
+"//calculations\n",
+"Q=Cadp*Cp/Catp\n",
+"deltaG=G+R*T*log(Q) /1000.\n",
+"//results\n",
+"printf('Reaction Gibbs energy = %d kJ/mol',deltaG-1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Hr=-285.83 //kJ/mol\n",
+"Sr=-163.34 //J/ K mol\n",
+"T=298.15 //K\n",
+"//calculations\n",
+"Gr=Hr-T*Sr/1000.\n",
+"//results\n",
+"printf('Gibbs energy = %.2f kJ/mol',Gr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Gr=-3.40 //kJ/mol\n",
+"R=8.314 //J/k mol\n",
+"T=298 //K\n",
+"//calculations\n",
+"lnK=Gr*10^3/(R*T)\n",
+"K=exp(lnK)\n",
+"//results\n",
+"printf('Equilibrium constant K= %.2f',K)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"aADP=1 //mol/L\n",
+"aP=1 //mol/L\n",
+"aATP=1 //mol/L\n",
+"aH2O=1 //mol/L\n",
+"aH=10^-7 //mol/L\n",
+"G=10 //kJ/mol\n",
+"T=298 //K\n",
+"R=8.314 //J/K mol\n",
+"//calculations\n",
+"Q=aADP*aP*aH/(aATP*aH2O)\n",
+"Gr=G+R*T*log(Q)/1000.\n",
+"//results\n",
+"printf('Change in nGibbs energy =%d kJ/mol',Gr-1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3_i: illustration_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Hr=178 //kJ/mol\n",
+"Sr=161 //J/K mol\n",
+"//calculations\n",
+"T=Hr*10^3 /Sr\n",
+"//results\n",
+"printf('Decompostion temperature = %.2e K',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4_e: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Gr=1.7*10^3 //J/mol\n",
+"T=298 //K\n",
+"R=8.314 //J/K mol\n",
+"K=0.5\n",
+"//calculations\n",
+"GbyRT=Gr/(R*T)\n",
+"feq=K/(K+1)\n",
+"//results\n",
+"printf('Equivalent fraction = %.2f ',feq)\n",
+"disp('For the second part, Gr=1.7 + 2.48 ln(f/1-f)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4_i: illustration_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"GCO2=-394 //kJ/mol\n",
+"GCO=-137 //kJ/mol\n",
+"GO2=0\n",
+"//calculations\n",
+"deltaG=2*GCO2-2*GCO+GO2\n",
+"//results\n",
+"printf('Standard reaction gibbs energy = %d kJ/mol',deltaG)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5_e: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"species=['N2' 'H2' 'NH3']\n",
+"change=['-x' '-3x' '2x']\n",
+"E=['1-x' '3-3x' '2x']\n",
+"disp('Concentration table')\n",
+"disp(species)\n",
+"disp(change)\n",
+"disp(E)\n",
+"K=977\n",
+"//Calculations\n",
+"g=sqrt(27*K/4)\n",
+"x=poly(0,'x');\n",
+"vector=roots(g*x^2 -(2*g +1)*x +g)\n",
+"sol=vector(2)\n",
+"PN2=1-sol\n",
+"PH2=3-3*sol\n",
+"PNH3=2*sol\n",
+"K=PNH3^2/(PH2^3 *PN2)\n",
+"//results\n",
+"printf('Pressure of N2 gas =%.2f bar',PN2)\n",
+"printf('\n Pressure of H2 gas =%.2f bar',PH2)\n",
+"printf('\n Pressure of NH3 gas =%.2f bar',PNH3)\n",
+"printf('\n K final = %.1e> it is close to original value.',K)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}