summaryrefslogtreecommitdiff
path: root/Electronic_Devices_by_T_L_Floyd/6-BJT_Amplifiers.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Devices_by_T_L_Floyd/6-BJT_Amplifiers.ipynb')
-rw-r--r--Electronic_Devices_by_T_L_Floyd/6-BJT_Amplifiers.ipynb439
1 files changed, 439 insertions, 0 deletions
diff --git a/Electronic_Devices_by_T_L_Floyd/6-BJT_Amplifiers.ipynb b/Electronic_Devices_by_T_L_Floyd/6-BJT_Amplifiers.ipynb
new file mode 100644
index 0000000..0353ff8
--- /dev/null
+++ b/Electronic_Devices_by_T_L_Floyd/6-BJT_Amplifiers.ipynb
@@ -0,0 +1,439 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: BJT Amplifiers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: Darlington_emitter_follower.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.10\n",
+"V_CC=12;\n",
+"V_BE=0.7;\n",
+"R_C=10^3;\n",
+"r_e_ce=5; //for common emitter amplifier\n",
+"R1=10*10^3;\n",
+"R2=22*10^3;\n",
+"R_E=22;\n",
+"R_L=8;\n",
+"B_DC=100;\n",
+"B_ac=100;\n",
+"V_B=((R2*B_DC^2*R_E/(R2+B_DC^2*R_E))/(R1+(R2*B_DC^2*R_E/(R2+B_DC^2*R_E))))*V_CC;\n",
+"V_E=V_B-2*V_BE;\n",
+"I_E=V_E/R_E;\n",
+"r_e=25*10^-3/I_E; //for darlington emitter-follower\n",
+"P_R_E=I_E^2*R_E; //power dissipated by R_E\n",
+"P_Q2=(V_CC-V_E)*I_E //power dissipated by transistor Q2\n",
+"R_e=R_E*R_L/(R_E+R_L); //ac emitter resistance of darlington emitter follower\n",
+"R_in_tot=R1*R2*B_ac^2*(R_e+r_e)/(R1*R2+R1*B_ac^2*(r_e+R_e)+R2*B_ac^2*(r_e+R_e)); //total input resistance of darlington\n",
+"R_c=R_C*R_in_tot/(R_C+R_in_tot); //effective ac resistance\n",
+"A_v_CE=R_c/r_e_ce;\n",
+"disp(A_v_CE,'voltage gain of common emitter amplifier')\n",
+"A_v_EF=R_e/(r_e+R_e);\n",
+"disp(A_v_EF,'voltage gain of darlington emitter follower')\n",
+"A_v=A_v_CE*A_v_EF;\n",
+"disp(A_v,'overall voltage gain')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Common_base_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.11\n",
+"B_DC=250;\n",
+"R_C=2.2*10^3;\n",
+"R_E=1*10^3;\n",
+"R_L=10*10^3;\n",
+"R1=56*10^3;\n",
+"R2=12*10^3;\n",
+"V_BE=0.7;\n",
+"V_CC=10;\n",
+"//since B_DC*R_E>>R2\n",
+"V_B=(R2/(R1+R2))*V_CC;\n",
+"V_E=V_B-V_BE;\n",
+"I_E=V_E/R_E;\n",
+"r_e=25*10^-3/I_E;\n",
+"R_in=r_e; //input resistance\n",
+"R_c=R_C*R_L/(R_C+R_L); //ac collector resistance\n",
+"A_v=R_c/r_e;\n",
+"//current gain is almost 1\n",
+"//power gain is approximately equal to voltage gain\n",
+"A_p=A_v;\n",
+"A_i=1;\n",
+"disp(R_in,'input resistance in ohms')\n",
+"disp(A_v,'voltage gain')\n",
+"disp(A_i,'current gain')\n",
+"disp(A_p,'power gain')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: Voltage_gain_decibel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.12\n",
+"A_v1=10;\n",
+"A_v2=15;\n",
+"A_v3=20;\n",
+"A_v=A_v1*A_v2*A_v3; //overall voltage gain\n",
+"disp(A_v,'overall voltage gain')\n",
+"A_v1_dB=gain_in_decibel_voltage(A_v1);\n",
+"A_v2_dB=gain_in_decibel_voltage(A_v2);\n",
+"A_v3_dB=gain_in_decibel_voltage(A_v3);\n",
+"A_v_dB=A_v1_dB+A_v2_dB+A_v3_dB;\n",
+"disp(A_v_dB,'total voltage gain in decibels')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Linear_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.1\n",
+"disp('graph question, cannot be solved in scilab')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: AC_Emitter_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.2\n",
+"I_E=2*10^-3;\n",
+"r_e=25*10^-3/I_E;\n",
+"disp(r_e,'ac emitter resistance in ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Base_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.3\n",
+"I_E=3.8*10^-3;\n",
+"B_ac=160;\n",
+"R1=22*10^3;\n",
+"R2=6.8*10^3;\n",
+"R_s=300;\n",
+"V_s=10*10^-3;\n",
+"r_e=25*10^-3/I_E;\n",
+"R_in_base=B_ac*r_e;\n",
+"R_in_tot=(R1*R2*R_in_base)/(R_in_base*R1+R_in_base*R2+R1*R2);\n",
+"V_b=(R_in_tot/(R_in_tot+R_s))*V_s;\n",
+"disp(V_b,'voltage at the base of the transistor in volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Emitter_bypass_capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.4\n",
+"R_E=560;\n",
+"f=2*10^3; //minimum value of frequency in hertz\n",
+"X_C=R_E/10; //minimum value of capacitive reactance\n",
+"C2=1/(2*%pi*X_C*f);\n",
+"disp(C2,'value of bypass capacitor in farads')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Effect_bypass_capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+" //ex6.5\n",
+"r_e=6.58; //from ex6.3\n",
+"R_C=1*10^3;\n",
+"R_E=560;\n",
+"A_v=R_C/(R_E+r_e);\n",
+"disp(A_v,'gain without bypass capacitor')\n",
+"A_v=R_C/r_e;\n",
+"disp(A_v,'gain in the presence of bypass capacitor')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Gain_with_load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.6\n",
+"R_C=10^3;\n",
+"R_L=5*10^3;\n",
+"r_e=6.58;\n",
+"R_c=(R_C*R_L)/(R_C+R_L);\n",
+"disp(R_c,'ac collector resistor in ohms')\n",
+"A_v=R_c/r_e;\n",
+"disp(A_v,'gain with load')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: Gain_swamped_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.7\n",
+"R_C=3.3*10^3;\n",
+"R_E1=330;\n",
+"A_v=R_C/R_E1;\n",
+"disp(A_v,'approximate voltage gain as R_E2 is bypassed by C2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Common_emitter_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.8\n",
+"B_DC=150;\n",
+"B_ac=175;\n",
+"V_CC=10;\n",
+"V_s=10*10^-3;\n",
+"R_s=600;\n",
+"R1=47*10^3;\n",
+"R2=10*10^3;\n",
+"R_E1=470;\n",
+"R_E2=470;\n",
+"R_C=4.7*10^3;\n",
+"R_L=47*10^3;\n",
+"R_IN_base=B_DC*(R_E1+R_E2);\n",
+"//since R_IN_base is ten times more than R2,it can be neglected in DC voltage calculation\n",
+"V_B=(R2/(R2+R1))*V_CC;\n",
+"V_E=V_B-0.7;\n",
+"I_E=V_E/(R_E1+R_E2);\n",
+"I_C=I_E;\n",
+"V_C=V_CC-I_C*R_C;\n",
+"disp(V_C,'dc collector voltage in volts')\n",
+"r_e=25*10^-3/I_E;\n",
+"//base resistance\n",
+"R_in_base=B_ac*(r_e+R_E1);\n",
+"//total input resistance\n",
+"R_in_tot=(R1*R2*R_in_base)/(R1*R2+R_in_base*R1+R_in_base*R2);\n",
+"attenuation=R_in_tot/(R_s+R_in_tot);\n",
+"//ac collector resistance\n",
+"R_c=R_C*R_L/(R_C+R_L);\n",
+"//voltage gain from base to collector\n",
+"A_v=R_c/R_E1;\n",
+"//overall voltage gain A_V\n",
+"A_V=A_v*attenuation;\n",
+"//rms voltage at collector V_c\n",
+"V_c=A_V*V_s;\n",
+"Max_V_c_p=V_C+sqrt(2)*V_c;\n",
+"Min_V_c_p=V_C-sqrt(2)*V_c;\n",
+"V_out_p=sqrt(2)*V_c;\n",
+"//assume frequency to be 1Hz\n",
+"f=1;\n",
+"t=0:0.0005:4;\n",
+"y=V_C+V_c*sin(2*%pi*f.*t);\n",
+"clf();\n",
+"subplot(121)\n",
+"xtitle('Collector Voltage')\n",
+"plot(t,y)\n",
+"subplot(122)\n",
+"xtitle('source and output ac voltage')\n",
+"x=-V_s*sin(2*f*%pi.*t);\n",
+"z=V_out_p*sin(2*%pi*f.*t);\n",
+"plot(t,x,'r')\n",
+"plot(t,z,'-.')\n",
+"h1=legend(['source voltage';'output voltage'])\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: Current_gain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//ex6.9\n",
+"R_E=10^3;\n",
+"R_L=10^3;\n",
+"R1=18*10^3;\n",
+"R2=18*10^3;\n",
+"B_ac=175;\n",
+"V_CC=10;\n",
+"V_BE=0.7;\n",
+"V_in=1;\n",
+"//ac emitter resistance R_e\n",
+"R_e=(R_E*R_L)/(R_E+R_L);\n",
+"//resistance from base R_in_base\n",
+"R_in_base=B_ac*R_e;\n",
+"//total input resiatance R_in_tot\n",
+"R_in_tot=(R1*R2*R_in_base)/(R1*R2+R1*R_in_base+R2*R_in_base);\n",
+"disp(R_in_tot,'total input resistance in ohms')\n",
+"V_E=((R2/(R1+R2))*V_CC)-V_BE;\n",
+"I_E=V_E/R_E;\n",
+"r_e=25*10^-3/I_E;\n",
+"A_v=R_e/(r_e+R_e);\n",
+"disp(A_v,'voltage gain')\n",
+"//ac emitter current I_e\n",
+"//V_e=A_v*V_b=1V\n",
+"V_e=1;\n",
+"I_e=V_e/R_e;\n",
+"I_in=V_in/R_in_tot;\n",
+"A_i=I_e/I_in; //current gain\n",
+"disp(A_i,'current gain')\n",
+"A_p=A_i; //power gain\n",
+"//since R_L=R_E, one half of the total power is disspated to R_L\n",
+"A_p_load=A_p/2;\n",
+"disp(A_p_load,'power gain delivered to load')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}