summaryrefslogtreecommitdiff
path: root/Electronic_Devices_and_Circuits_by_D_C_Kulshreshtha/10-Feedback_in_Amplifiers.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Devices_and_Circuits_by_D_C_Kulshreshtha/10-Feedback_in_Amplifiers.ipynb')
-rw-r--r--Electronic_Devices_and_Circuits_by_D_C_Kulshreshtha/10-Feedback_in_Amplifiers.ipynb333
1 files changed, 333 insertions, 0 deletions
diff --git a/Electronic_Devices_and_Circuits_by_D_C_Kulshreshtha/10-Feedback_in_Amplifiers.ipynb b/Electronic_Devices_and_Circuits_by_D_C_Kulshreshtha/10-Feedback_in_Amplifiers.ipynb
new file mode 100644
index 0000000..f939871
--- /dev/null
+++ b/Electronic_Devices_and_Circuits_by_D_C_Kulshreshtha/10-Feedback_in_Amplifiers.ipynb
@@ -0,0 +1,333 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Feedback in Amplifiers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.10: Calculate_the_percentage_of_negative_feedback_to_input.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Calculate the percentage of negative feedback to input\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"Adb=60;//dB //internal gain in dB\n",
+"A=10^(Adb/(20)); //taking antilog\n",
+"Ro=12*10^3;//ohm //output resistance\n",
+"Rof=600;//ohm\n",
+"B=(Ro/Rof-1)/A;\n",
+"printf('The percentage of negative feedback to input= %.1f percent',B*100);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Determine_the_gain_of_feedback_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Determine the gain of feedback amplifier\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"A=100; //internal gain\n",
+"B=0.1;//feedback factor\n",
+"Af=A/(1+A*B);\n",
+"printf('The gain of feedback amplifier %.2f',Af);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Determine_the_gain_of_feedback_amplifier_in_dB.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Determine the gain of feedback amplifier in dB\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"Ad=60;//dB //internal gain in dB\n",
+"A=10^(Ad/20); //internal gain\n",
+"B=1/20;//feedback factor\n",
+"Af=A/(1+A*B);\n",
+"Afd=20*log10(Af);\n",
+"printf('The gain of feedback amplifier %.2f dB',Afd);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: Calculate_the_percentage_of_output_fed_back_to_input.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Calculate the percentage of output fed back to input\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"A=600; //internal gain\n",
+"Af=50; //gain of feedback amplifier\n",
+"B=(A/Af-1)/A;\n",
+"printf('The percentage of output fed back to input= %.3f percent',B*100);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Calculate_the_internal_gain_and_percentage_of_output_fed_back_to_input.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Calculate the internal gain and percentage of output fed back to input\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"Af=80; //gain of feedback amplifier\n",
+"Vi=0.05;//V //input with feedback\n",
+"Vi_=4*10^-3;//V //input without feedback\n",
+"Vo_=Af*Vi;\n",
+"A=Vo_/Vi_;\n",
+"printf('The internal gain is %.0f\n',A);\n",
+"B=(A/Af-1)/A;\n",
+"printf('The percentage of output fed back to input= %.2f percent',B*100);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Calculate_the_gain_with_and_without_feedback_and_feedback_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Calculate the gain with and without feedback and feedback factor\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"Vo_=5;//V //output voltage\n",
+"Vi=0.2;//V //input with feedback\n",
+"Vi_=0.05;//V //input without feedback\n",
+"A=Vo_/Vi_;\n",
+"Af=Vo_/Vi;\n",
+"printf('The gain without feedback is %.0f\n',A);\n",
+"printf('The gain with feedback is %.0f\n',Af);\n",
+"B=(A/Af-1)/A;\n",
+"printf('The feedback factor= %.0f percent',B*100);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Calculate_the_gain_of_feedback_amplifier_and_feedback_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Calculate the gain of feedback amplifier and feedback factor\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"A=100; //internal gain\n",
+"N=20;//dB //negative feedback\n",
+"B=(10^(-N/(-20))-1)/A; //taking antilog\n",
+"Af=A/(1+A*B);\n",
+"printf('The feedback factor= %.0f percent\n',B*100);\n",
+"printf('The gain of the feedback amplifier is %.0f\n',Af);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7: Calculate_percentage_change_in_the_overall_gain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Calculate percentage change in the overall gain\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"A=1000; //internal gain\n",
+"N=40;//dB //negative feedback\n",
+"D=10^((-N)/-20); //D=(1+AB) desensitivity\n",
+"dA_A=10;//percent //dA/A\n",
+"dAf_Af=dA_A/D; //dAf/Af\n",
+"printf('The percentage change in the overall gain= %.1f percent',dAf_Af);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.8: Calculate_percentage_change_in_the_overall_gain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Calculate percentage change in the overall gain\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"Adb=60;//dB //internal gain in dB\n",
+"B=0.005; //feedback factor\n",
+"A=10^(Adb/(20)); //taking antilog\n",
+"dA_A=-12;//percent //dA/A\n",
+"D=(1+A*B); //D=(1+AB) desensitivity\n",
+"dAf_Af=dA_A/D; //dAf/Af\n",
+"printf('The percentage change in the overall gain reduces by %.1f percent',-dAf_Af);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.9: Determine_the_input_resistance_of_feedback_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Determine the input resistance of feedback amplifier\n",
+"clear;\n",
+"clc;\n",
+"//soltion\n",
+"//given\n",
+"\n",
+"A=250; //internal gain\n",
+"B=0.1;//feedback factor\n",
+"Ri=1.1*10^3;//ohm //input resistance\n",
+"Rif=Ri*(1+A*B);\n",
+"printf('The input resistance of feedback amplifier %.1f kΩ',Rif/1000);\n",
+"//The ans in book is incorrect due to use of (2+A*B) instead of (1+A*B) the ans in book is 29.7 kΩ"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}