summaryrefslogtreecommitdiff
path: root/Electronic_Communication_by_D_Roddy/16-ANTENNAS.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/16-ANTENNAS.ipynb')
-rw-r--r--Electronic_Communication_by_D_Roddy/16-ANTENNAS.ipynb129
1 files changed, 129 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/16-ANTENNAS.ipynb b/Electronic_Communication_by_D_Roddy/16-ANTENNAS.ipynb
new file mode 100644
index 0000000..37ad774
--- /dev/null
+++ b/Electronic_Communication_by_D_Roddy/16-ANTENNAS.ipynb
@@ -0,0 +1,129 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: ANTENNAS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.19_1: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//prob no. 16.19.1\n",
+"// Paraboloida reflector antenna is given with\n",
+"D=6;//reflector diameter in m\n",
+"n=0.65;//illumination effeciency\n",
+"f=10^10;//frequency of operation in Hz\n",
+"c=3*10^8;//velo of light in m/s\n",
+"wl=c/f;\n",
+"A=(%pi*D^2)/4;\n",
+"A_eff=n*A;\n",
+"disp('m^2',A_eff,'Effective area is');\n",
+"D0=4*%pi*A_eff/wl^2;\n",
+"disp(D0,'The directivity is');\n",
+"BW_dB=70*wl/D;\n",
+"disp('degree',BW_dB,'The -3dB beamwidth is');\n",
+"BW_null=2*BW_dB;\n",
+"disp('degree',BW_null,'The null beamwidth is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.7_2: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 590\n",
+"//prob no. 16.7.2\n",
+"//For the Hertzian dipole, the radiation pattern is described by g(x)=sin^2(x) and g(y)=1\n",
+"// Determination of -3dB beamwidth\n",
+"// from the polar diagram shown we have\n",
+"g_x=0.5;\n",
+"x=asind(sqrt(g_x));\n",
+"g_y=0.5;\n",
+"y1=asind(sqrt(g_y));\n",
+"y=y1+90;\n",
+"//Therefore\n",
+"z=y-x;\n",
+"disp('degree',z,'The -3dB beamwidth is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.9_1: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//prob no. 16.9.1\n",
+"//Half dipole antenna is given with I=Io*cos(Bl) where l=0\n",
+"//The physical length of the antenna is wl/2\n",
+"//consider wl=unity and current Io=unity\n",
+"Io=1;\n",
+"wl=1;\n",
+"phy_length=wl/2;\n",
+"I_av=2*Io/%pi;\n",
+"//Thus area is given as \n",
+"Area=I_av*phy_length;\n",
+"// From the above eq l_effective is given as\n",
+"disp('l_eff= wl/pi');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}