diff options
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/1-Passive_Circuits.ipynb')
-rw-r--r-- | Electronic_Communication_by_D_Roddy/1-Passive_Circuits.ipynb | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/1-Passive_Circuits.ipynb b/Electronic_Communication_by_D_Roddy/1-Passive_Circuits.ipynb new file mode 100644 index 0000000..0356883 --- /dev/null +++ b/Electronic_Communication_by_D_Roddy/1-Passive_Circuits.ipynb @@ -0,0 +1,293 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Passive Circuits" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10_1: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 34\n", +"// prob no 1_10_1\n", +"//From the ckt of fig. 1.10.1(a)\n", +"C1=70*10^-12\n", +"C2=150*10^-12\n", +"Rl=200\n", +"Q=150\n", +"f=27*10^6\n", +"r=40000\n", +"//Determination of common resonant freq\n", +"wo=2*3.14*f;\n", +"disp('Mrad/sec',wo/(10^6),+'The value of common resonant freq is');\n", +"//Determination of Gl\n", +"Gl=1/Rl;\n", +"disp('mSec',Gl*(10^3),+'The value of Gl is');\n", +"//Checking the approxiamtion in denominator\n", +"ap=((wo*(C1+C2))/(Gl))^2\n", +"alpha=(C1+C2)/C1;\n", +"disp(alpha,'The value of alpha is ')\n", +"//Determination of effective load\n", +"Reff=((alpha)^2)*Rl;\n", +"disp('kohm',Reff/(10^3),+'The value of effective load is');\n", +"//If effective load is much less than internal resistance hence tuning capacitance then\n", +"Cs=C1*C2/(C1+C2);\n", +"disp('pF',Cs*(10^12),+'The value of tuning capacitance is'); \n", +"//Determination of Rd\n", +"Rd=Q/(wo*Cs);\n", +"disp('kohm',Rd/(10^3),+'The value of Rd is'); \n", +"//If Rd is much greater than Reff then -3dB bandwidth is given by\n", +"B=1/(2*3.14*C2*alpha*Rl);\n", +"disp('MHz',B/(10^6),+'The value of -3dB BW is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 5\n", +"// prob no 1_2_2\n", +"//T-type attenuator provide 6-dB insertion loss\n", +"//All resistance are in ohm\n", +"Ro=50\n", +"ILdB=6\n", +"IL=10^-(ILdB/20)\n", +"//Determination of R \n", +"R=Ro*(1-IL)/(1+IL)\n", +"disp('ohm',R,+'The value of resistance R is')\n", +"//Determination of R3\n", +"R3=(2*Ro*IL)/(1-(0.5)^2)\n", +"disp('ohm',R3,+'The value of resistance R3 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 7\n", +"// prob no 1_2_3\n", +"//pi-attenuator with 6 dB insertion loss\n", +"//output resistance is Ro=50 ohm\n", +"//All resistance are in ohm\n", +"Ro=50\n", +"ILdB=6\n", +"IL=10^-(ILdB/20)\n", +"//Determination of RA and RB\n", +"RA=Ro*(1+IL)/(1-IL);\n", +"disp('ohm',RA,+'The value of resistance RA and RB is')\n", +"//Determination of RC\n", +"RC=Ro*(1-(IL)^2)/(2*IL);\n", +"disp('ohm',RC,+'The value of resistance RC is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 9\n", +"// prob no 1_2_4\n", +"//As given in fig. 1.2.4 L-attenuator with source resistance Rs=75 ohm and load resistance Rl=50 ohm\n", +"Rs=75; Rl=50;\n", +"//Determination of R1\n", +"R1=(Rs*(Rs-Rl))^(1/2);\n", +"disp('ohm',R1,+'The value of resistance R1 is');\n", +"//Determination of R3\n", +"R3=((Rs^2)-(R1^2))/R1;\n", +"disp('ohm',R3,+'The value of resistance R3 is');\n", +"//Determination of insertion loss\n", +"IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)^2)\n", +"ILdB=-20*log10(IL);//convertion of power in decibels\n", +"disp('dB',ILdB,+'The value of insertion loss is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 10\n", +"// prob no 1_2_5\n", +"//As given in fig. 1.2.4 L-attenuator with source resistance Rs=10 ohm and load resistance Rl=50 ohm\n", +"Rs=10; Rl=50;\n", +"//Determination of R2\n", +"R2=(Rl*(Rl-Rs))^(1/2);\n", +"disp('ohm',R2,+'The value of resistance R2 is');\n", +"//Determination of R3\n", +"R3=((Rl^2)-(R2^2))/R2;\n", +"disp('ohm',R3,+'The value of resistance R3 is');\n", +"//Determination of insertion loss\n", +"IL=(R3*(Rs+Rl))/((Rs+R3)*(R3+R2+Rl)-(R3)^2)\n", +"ILdB=-20*log10(IL);//convertion of power in decibels\n", +"disp('dB',ILdB,+'The value of insertion loss is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5_1: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 21\n", +"// prob no 1_5_1\n", +"//Series tuned resonant ckt is given which is tuned at 25 MHz with \n", +"//series resistance 5 ohm self capacitance 7 pF and inductance 1 uH \n", +"C=7*10^-12;R=5;L=10^-6;f=25*10^6;\n", +"//Determination of self resonant freq of coil denoted as Fsr\n", +"Fsr=1/(2*3.14*(L*C)^0.5);\n", +"disp('MHz',Fsr/(10^6),+'The value of self resonant freq is');\n", +"//Determination of Q-factor of coil,excluding self-capacitive effects\n", +"Q=(2*3.14*f*L)/R;\n", +"disp(Q,'The value of Q-factor is');\n", +"//Determination of effective inductance\n", +"Leff=L/(1-(f/Fsr)^2);\n", +"disp('uH',Leff*(10^6),+'The value of effective inductance is');\n", +"//Determination of effective Q-factor\n", +"Qeff=Q*(1-(f/Fsr)^2);\n", +"disp(Qeff,'The value of effective Q-factor is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8_1: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 26\n", +"// prob no 1_8_1\n", +"//High frequency transformer with identical primary and secondary circuits\n", +"Lp=150*10^-6;\n", +"Ls=150*10^-6;\n", +"Cp=470*10^-12;\n", +"Cs=470*10^-12;\n", +"//Lp=Ls=150 uH,Cp=Cs=470 pF\n", +"Q=85//Q-factor for each ckt is 85\n", +"c=0.01//Coeff of coupling is 0.01\n", +"Rl=5000//Load resistance Rl=5000 ohm\n", +"r=75000//Constant current source with internal resistance r=75 kohm\n", +"//Determination of common resonant frequency\n", +"wo=1/((Lp*Cp)^(1/2));\n", +"//disp('Mrad/sec',wo/(10^6),+'The value of common resonant freq is');\n", +"p=3.77*10^6;\n", +"Z2=Rl/(1+(p*%i*Cs*Rl));\n", +"Z1=r/(1+(p*%i*Cp*r));\n", +"// At resonance Zs=Zp=Z\n", +"Z=wo*Ls*(1/Q +%i);\n", +"Zm=%i*p*c*Lp;\n", +"// Determination of denominator\n", +"Dr=((Z+Z1)*(Z+Z2))-(Zm^2)\n", +"// Hence transfer impedance is given as\n", +"Zr= (Z1*Z2*Zm)/Dr;\n", +"disp('ohm',Zr,'The transfer impedance is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |