summaryrefslogtreecommitdiff
path: root/Electrical_Power_Systems_by_C_L_Wadhwa/9-INSULATED_CABLES.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electrical_Power_Systems_by_C_L_Wadhwa/9-INSULATED_CABLES.ipynb')
-rw-r--r--Electrical_Power_Systems_by_C_L_Wadhwa/9-INSULATED_CABLES.ipynb272
1 files changed, 272 insertions, 0 deletions
diff --git a/Electrical_Power_Systems_by_C_L_Wadhwa/9-INSULATED_CABLES.ipynb b/Electrical_Power_Systems_by_C_L_Wadhwa/9-INSULATED_CABLES.ipynb
new file mode 100644
index 0000000..c593214
--- /dev/null
+++ b/Electrical_Power_Systems_by_C_L_Wadhwa/9-INSULATED_CABLES.ipynb
@@ -0,0 +1,272 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: INSULATED CABLES"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: To_determine_the_economic_overall_diameter_of_a_1core_cable_metal_sheathead.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To determine the economic overall diameter of a 1- core cable metal sheathead.\n",
+"clear\n",
+"clc;\n",
+"V=85;// working voltage (kV)\n",
+"gmax=65;// dielectric strength of insulating material (kV/cm)\n",
+"r=V/gmax;\n",
+"d=2*r;\n",
+"D=2.6*%e;\n",
+"mprintf('Diameter of the sheath =%.2f cm\n',D);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: To_determine_the_minimum_internal_diameter_of_the_lead_sheath.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To determine the minimum internal diameter of the lead sheath\n",
+"clear\n",
+"clc;\n",
+"e1=4;\n",
+"e2=4;\n",
+"e3=2.5;\n",
+"g1max=50;\n",
+"g2max=40;\n",
+"g3max=30;\n",
+"r=.5;// radius (cm)\n",
+"r1=r*e1*g1max/(e2*g2max);\n",
+"r2=r1*e2*g2max/(e3*g3max);\n",
+"V=66;\n",
+"lnc=(V-((r*g1max*log(r1/r))+(r1*g2max*log(r2/r1))));\n",
+"m=lnc/(r2*g3max);\n",
+"R=r2*(%e^m);\n",
+"D=2*R;\n",
+"mprintf('minimum internal diameter of the lead sheath,D=%.2f cms\n',D);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: To_determine_the_maximum_safe_working_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To determine the maximum safe working voltage\n",
+"clear\n",
+"clc;\n",
+"r=.5;//radius of conductor(cm)\n",
+"g1max=34;\n",
+"er=5;\n",
+"r1=1;\n",
+"R=7/2;//external dia(cm)\n",
+"g2max=(r*g1max)/(er*r1);\n",
+"V=((r*g1max*log(r1/r))+(r1*g2max*log(R/r1)));\n",
+"V=V/(sqrt(2));\n",
+"mprintf('Maximum safe working volltage ,V =%.2f kV r.m.s\n',V);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: To_determine_the_maximum_stresses_in_each_of_the_three_layers.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//To determine the maximum stresses in each of the three layers .\n",
+"clear\n",
+"clc;\n",
+"r=.9;\n",
+"r1=1.25\n",
+"r2=r1+.35;\n",
+"r3=r2+.35;// radius of outermost layer\n",
+"Vd=20;// voltage difference (kV)\n",
+"g1max=Vd/(r*log(r1/r));\n",
+"g2max=Vd/(r1*log(r2/r1));\n",
+"g3max=(66-40)/(r2*log(r3/r2));\n",
+"mprintf('g1max =%.1f kV/cm\n',g1max);\n",
+"mprintf('g2max =%.2f kV/cm\n',g2max);\n",
+"mprintf('g3max =%.0f kV/cm\n',g3max);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: o_dtermine_the_equivalent_star_connected_capacity_and_the_kVA_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//To dtermine the equivalent star connected capacity and the kVA required.\n",
+"clear\n",
+"clc;\n",
+"V=20;//voltage (kV)\n",
+"w=314;\n",
+"C=2*3.04*10^-6;//capacitance per phase(micro-farad)\n",
+"KVA=V*V*w*C*1000;\n",
+"mprintf('3-phase kVA required =%.0f kVA',KVA); //Answer don't match due to difference in rounding off of digits"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: EX9_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine the capacitance (a)between any two conductors (b)between any two bunched conductors and the third conductor (c)Also calculate the charging current per phase per km\n",
+"clear\n",
+"clc;\n",
+"C1=.208;\n",
+"C2=.096;\n",
+"Cx=3*C1;\n",
+"w=314;\n",
+"V=10;\n",
+"Cy=(C1+ 2*C2);\n",
+"Co=((1.5*Cy)-(Cx/6));\n",
+"C=Co/2;\n",
+"mprintf('(i)Capacitance between any two conductors=%.3f micro-Farad/km\n',C);\n",
+"c=((2*C2 + ((2/3)*C1)));\n",
+"mprintf('(ii)Capacitance between any two bunched conductors and the third conductor=%.2f micro-Farad/km\n',c);\n",
+"I=V*w*Co*1000*(10^-6)/sqrt(3);\n",
+"mprintf('(iii)the charging current per phase per km =%.3f A\n',I);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: To_calculate_the_induced_emf_in_each_sheath.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To calculate the induced emf in each sheath .\n",
+"clear\n",
+"clc;\n",
+"rm=(2.28/2)-(.152/2);// mean radius of sheath (cm)\n",
+"d=5.08;\n",
+"a=d/rm;\n",
+"w=314;\n",
+"Xm=2*(10^-7)*log(a);// mutual inductance (H/m)\n",
+"Xm2=2000*Xm;\n",
+"V=w*Xm2*400;\n",
+"mprintf('Voltage induced =%.2f volts \n',V);//Answer don't match exactly due to difference in rounding off of digits i between calculations"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: To_determine_the_ratio_of_sheath_loss_to_core_loss_of_the_cable.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//To determine the ratio of sheath loss to core loss of the cable\n",
+"clear\n",
+"clc;\n",
+"R=2*.1625;\n",
+"Rs=2*2.14;\n",
+"M=314;\n",
+"w=6.268*10^-4;\n",
+"r=Rs*M*M*w*w/(R*((Rs^2)+(M*M*w*w)));\n",
+"mprintf('ratio=%.4f \n',r);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}