summaryrefslogtreecommitdiff
path: root/Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb')
-rw-r--r--Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb110
1 files changed, 110 insertions, 0 deletions
diff --git a/Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb b/Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb
new file mode 100644
index 0000000..a8460a7
--- /dev/null
+++ b/Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb
@@ -0,0 +1,110 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Algebraic Systems"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.17: Roots_of_polynomial.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"t=poly(0,'t');\n",
+"f=t^3+t^2-8*t+4\n",
+"g=factors(f)\n",
+"disp(r=roots(f),'roots of f(t) are as follows:')\n",
+"\n",
+"t=poly(0,'t');\n",
+"h=t^4-2*t^3+11*t-10\n",
+"disp(r=roots(h),'the real roots of h(t) are 1 and -2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.18: Roots_of_polynomial.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"t=poly(0,'t');\n",
+"f=t^4-3*t^3+6*t^2+25*t-39\n",
+"g=factors(f)\n",
+" disp(r=roots(f),'roots of f(t) are as follows:')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: Properties_of_operations.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"a=(8-4)-3\n",
+"b=8-(4-3)\n",
+"disp('since a and b are not equal so subtraction is non-commutative on Z(set of integers)')\n",
+"\n",
+"a=[1 2;3 4]\n",
+"b=[5 6;0 -2]\n",
+"g= a*b\n",
+"k= b*a\n",
+"disp('since g and k are not equal matrix multiplication is non-commutative')\n",
+"\n",
+"h=(2^2)^3\n",
+"j=2^(2^3)\n",
+"disp('since h and j are not equal so exponential operation is non associative on the set of positive integers N')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}