diff options
Diffstat (limited to 'Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb')
-rw-r--r-- | Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb | 110 |
1 files changed, 110 insertions, 0 deletions
diff --git a/Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb b/Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb new file mode 100644 index 0000000..a8460a7 --- /dev/null +++ b/Discrete_Mathematics_by_S_Lipschutz/12-Algebraic_Systems.ipynb @@ -0,0 +1,110 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Algebraic Systems" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.17: Roots_of_polynomial.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"t=poly(0,'t');\n", +"f=t^3+t^2-8*t+4\n", +"g=factors(f)\n", +"disp(r=roots(f),'roots of f(t) are as follows:')\n", +"\n", +"t=poly(0,'t');\n", +"h=t^4-2*t^3+11*t-10\n", +"disp(r=roots(h),'the real roots of h(t) are 1 and -2')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.18: Roots_of_polynomial.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"t=poly(0,'t');\n", +"f=t^4-3*t^3+6*t^2+25*t-39\n", +"g=factors(f)\n", +" disp(r=roots(f),'roots of f(t) are as follows:')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Properties_of_operations.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"a=(8-4)-3\n", +"b=8-(4-3)\n", +"disp('since a and b are not equal so subtraction is non-commutative on Z(set of integers)')\n", +"\n", +"a=[1 2;3 4]\n", +"b=[5 6;0 -2]\n", +"g= a*b\n", +"k= b*a\n", +"disp('since g and k are not equal matrix multiplication is non-commutative')\n", +"\n", +"h=(2^2)^3\n", +"j=2^(2^3)\n", +"disp('since h and j are not equal so exponential operation is non associative on the set of positive integers N')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |