summaryrefslogtreecommitdiff
path: root/Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb')
-rw-r--r--Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb573
1 files changed, 573 insertions, 0 deletions
diff --git a/Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb b/Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb
new file mode 100644
index 0000000..cb654bf
--- /dev/null
+++ b/Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb
@@ -0,0 +1,573 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Magnetisn and ac theroy"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: power_loss_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"v=15*10^3 //voltage\n",
+"p=80*10^3 //power\n",
+"r=430 //resistence\n",
+"v1=150*10^3//stepped value\n",
+"//calculation\n",
+"i=p/v//cable current\n",
+"i1=p/v1//stepped up cable current\n",
+"k=i*i/(i1*i1)//ratio of power loss\n",
+"//output\n",
+"printf('the ratio of power loss is %d',k)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11: secondary_power_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"ep=150*10^3 //electric energy to primary\n",
+"e=0.69 //efficieny\n",
+"t=70 //time\n",
+"//calculation\n",
+"es=e*ep//transformer equation\n",
+"ps=es/t//power\n",
+"//output\n",
+"printf('the power output is %3.3e W',ps)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12: charge_produced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"v=250 //dc voltage\n",
+"s=0.22 //length\n",
+"d=4*10^-3 //diameter\n",
+"//calculation\n",
+"q=8.9*10^-12*1*0.22*0.22*250/(4*10^-3)//for air\n",
+"q1=8.9*10^-12*6.8*0.22*0.22*250/(4*10^-3)//for material\n",
+"//output\n",
+"printf('the permittivity for air is %3.3e C',q)\n",
+"printf('\n the relative permittivity for material is %3.3e C',q1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13: relative_permittivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"d=6*10^-5\n",
+"w=0.1\n",
+"er=9.4 //relative permittivity of medium\n",
+"c=1*10^-6 //capacitance\n",
+"//calculation\n",
+"l=c*d/(8.9*10^-12*er*w)//parallel plate capacitor formula\n",
+"//output\n",
+"printf('the length of wax paper is %3.3f m',l)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14: charge_in_capacitors.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"v=3 //voltage\n",
+"c1=2.5*10^-6 //capacitance\n",
+"c2=2.5*10^-6\n",
+"c3=2.5*10^-6\n",
+"//calculation\n",
+"q=v/((1/c1)+(1/c2)+(1/c3))//capacitors in series\n",
+"q1=c1*v//capacitors in parallel\n",
+"//output\n",
+"printf('the pd when capacitors are in series is %3.3e C',q)\n",
+"printf('\n the pd when capacitors are in parallel is %3.3e C',q1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15: rms_and_peak_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"v=14 //voltage\n",
+"//calculation\n",
+"v0=v*sqrt(2)//rms value\n",
+"//output\n",
+"printf('rms value of ac is 14 V')\n",
+"printf('\n the peak value of ac is %3.3f V',v0)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16: Qmax_and_rms_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"c=65*10^-6 //capcacitor\n",
+"v=12 //voltage\n",
+"f=90 //frequency\n",
+"//calculation\n",
+"vmax=v*sqrt(2)//peak pd\n",
+"qmax=c*vmax//from eqn Q=CV\n",
+"irms=v*2*%pi*f*c//maximum charge from capacitor reactance\n",
+"//output\n",
+"printf('the maximum charge is %3.3f A',irms)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17: capacitance_of_C.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"r=200 //resistence\n",
+"v=14 //voltage\n",
+"vr=9//pd across each component\n",
+"f=90 //frequency\n",
+"//calculation\n",
+"c=vr/(2*%pi*f*vr*r)//capacitor connected\n",
+"//output\n",
+"printf('the capacitor connected is %3.3e F',c)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18: rate_of_change_of_pd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"v=4 //voltage\n",
+"r=200 //resistence\n",
+"c=8.8*10^-6 //capacitance\n",
+"//calculation\n",
+"x=v/(r*c)//calculating V/t\n",
+"//output\n",
+"printf('the initial rate is %3.3e Vs^-1',x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19: determine_resistance_and_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"v=14 //voltage\n",
+"f=90 //frequency\n",
+"i=0.4 //current\n",
+"t=55 //phase\n",
+"//calculation\n",
+"r=v/(i*sqrt(1+tand(t)^2))// value of resistance\n",
+"l=r*tand(t)/(2*f*%pi)//value of inductance\n",
+"c=1/(4*%pi*%pi*f*f*l)//value of capacitance for resonance to occur\n",
+"//output\n",
+"printf('the value of resistance is %3.3f ohm',r)\n",
+"printf('\nthe value of inductance is %3.3f H',l)\n",
+"printf('\nthe value of capacitor is %3.3e F',c)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: force_on_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"B=4.3*10^-4//magnetic flux density\n",
+"I=6.4//current \n",
+"L=4.8//length of wire\n",
+"t=24//inclination through the field\n",
+"//calculation\n",
+"f=B*I*L//force on wire when it is perpendicular\n",
+"f1=B*I*L*sind(t)//force on wire when it is inclined at t degrees\n",
+"//output\n",
+"printf('the force on wire is %3.3f N',f)\n",
+"printf('\nthe force at an anglr 24 deg is %3.3e N',f1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"i=3.4 //current passing\n",
+"a=0.04 //distance from centre of cconductor\n",
+"//calcution\n",
+"b=(4*%pi*10^-7*5)/(2*%pi*a)//magnetic flux density\n",
+"//output\n",
+"printf('the flux density is %3.3e T',b)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: permeability_of_free_space.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//INPUT DATA\n",
+"Ix=1 //current in first wire\n",
+"Iy=1 //current in second wire\n",
+"FbyL=2*10^-7 //according to the definition of ampere\n",
+"a=1 //distance between the wires\n",
+"\n",
+"\n",
+"//calculation\n",
+"\n",
+"m=(2*%pi*a*FbyL)/(Ix*Iy)\n",
+"\n",
+"\n",
+"\n",
+"//output\n",
+"printf('the permeability of free space is %3.3e H/m ',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: faraday_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"n=10 //number of rounds\n",
+"B=2*10^-2 //flux density\n",
+"a=5*10^-4 //areaof cross section\n",
+"t=10//time\n",
+"//calculation\n",
+"c=n*B*a //change in flux\n",
+"emf=c/t //induced emf\n",
+"//output\n",
+"printf('the flux changed is %3.3e Wb ',c)\n",
+"printf('\n the induced emf is %3.3e V',emf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: moment_of_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"N=250 //number of turns\n",
+"B=8.6*10^-4 //flux density\n",
+"I=5 //current\n",
+"A=16*10^-4//area\n",
+"t=35\n",
+"//calculation\n",
+"c=B*I*A*N*sind(t)//moment of couple\n",
+"x=c/(B*I*2*A*N)//doubling the area\n",
+"y=asind(x)\n",
+"//output\n",
+"printf('the moment of couple is %3.3e Nm',c)\n",
+"printf('\n the new angle produced is %3.3f deg',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: maximum_emf_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"a=20*10^-4 //area\n",
+"n=900 //number of turns\n",
+"b=5*10^-2 //flux density\n",
+"i=4.5 //current\n",
+"//calculation\n",
+"e=b*a*n*2*%pi*30//emf induced\n",
+"p=e*i//power output\n",
+"//output\n",
+"printf('the emf induced is %3.3f V',e)\n",
+"printf('\n the power output is %3.3f W',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: pd_across_motor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"R=68 //resistence\n",
+"i=4.5 //current\n",
+"e=17 //emf\n",
+"//calculation\n",
+"v=(i*R)+e//supply pd\n",
+"//output\n",
+"printf('the supply of pd across motor is %3.0f V',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9: transformer_equation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"ns=330 //number of turns of secondary\n",
+"np=450 //number of turns in primary\n",
+"e=0.65 //efficiency\n",
+"vp=240 //ac supply of primary\n",
+"//calculation\n",
+"vs=e*(vp*ns)/np//transformer equation\n",
+"//output\n",
+"printf('the pd across secondary is %3.0f V',vs)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}