diff options
Diffstat (limited to 'Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb')
-rw-r--r-- | Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb | 573 |
1 files changed, 573 insertions, 0 deletions
diff --git a/Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb b/Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb new file mode 100644 index 0000000..cb654bf --- /dev/null +++ b/Concise_Physics_by_H_Matyaka/8-Magnetisn_and_ac_theroy.ipynb @@ -0,0 +1,573 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Magnetisn and ac theroy" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: power_loss_ratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=15*10^3 //voltage\n", +"p=80*10^3 //power\n", +"r=430 //resistence\n", +"v1=150*10^3//stepped value\n", +"//calculation\n", +"i=p/v//cable current\n", +"i1=p/v1//stepped up cable current\n", +"k=i*i/(i1*i1)//ratio of power loss\n", +"//output\n", +"printf('the ratio of power loss is %d',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: secondary_power_output.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"ep=150*10^3 //electric energy to primary\n", +"e=0.69 //efficieny\n", +"t=70 //time\n", +"//calculation\n", +"es=e*ep//transformer equation\n", +"ps=es/t//power\n", +"//output\n", +"printf('the power output is %3.3e W',ps)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.12: charge_produced.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=250 //dc voltage\n", +"s=0.22 //length\n", +"d=4*10^-3 //diameter\n", +"//calculation\n", +"q=8.9*10^-12*1*0.22*0.22*250/(4*10^-3)//for air\n", +"q1=8.9*10^-12*6.8*0.22*0.22*250/(4*10^-3)//for material\n", +"//output\n", +"printf('the permittivity for air is %3.3e C',q)\n", +"printf('\n the relative permittivity for material is %3.3e C',q1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.13: relative_permittivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"d=6*10^-5\n", +"w=0.1\n", +"er=9.4 //relative permittivity of medium\n", +"c=1*10^-6 //capacitance\n", +"//calculation\n", +"l=c*d/(8.9*10^-12*er*w)//parallel plate capacitor formula\n", +"//output\n", +"printf('the length of wax paper is %3.3f m',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.14: charge_in_capacitors.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=3 //voltage\n", +"c1=2.5*10^-6 //capacitance\n", +"c2=2.5*10^-6\n", +"c3=2.5*10^-6\n", +"//calculation\n", +"q=v/((1/c1)+(1/c2)+(1/c3))//capacitors in series\n", +"q1=c1*v//capacitors in parallel\n", +"//output\n", +"printf('the pd when capacitors are in series is %3.3e C',q)\n", +"printf('\n the pd when capacitors are in parallel is %3.3e C',q1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.15: rms_and_peak_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=14 //voltage\n", +"//calculation\n", +"v0=v*sqrt(2)//rms value\n", +"//output\n", +"printf('rms value of ac is 14 V')\n", +"printf('\n the peak value of ac is %3.3f V',v0)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.16: Qmax_and_rms_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"c=65*10^-6 //capcacitor\n", +"v=12 //voltage\n", +"f=90 //frequency\n", +"//calculation\n", +"vmax=v*sqrt(2)//peak pd\n", +"qmax=c*vmax//from eqn Q=CV\n", +"irms=v*2*%pi*f*c//maximum charge from capacitor reactance\n", +"//output\n", +"printf('the maximum charge is %3.3f A',irms)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.17: capacitance_of_C.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"r=200 //resistence\n", +"v=14 //voltage\n", +"vr=9//pd across each component\n", +"f=90 //frequency\n", +"//calculation\n", +"c=vr/(2*%pi*f*vr*r)//capacitor connected\n", +"//output\n", +"printf('the capacitor connected is %3.3e F',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.18: rate_of_change_of_pd.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=4 //voltage\n", +"r=200 //resistence\n", +"c=8.8*10^-6 //capacitance\n", +"//calculation\n", +"x=v/(r*c)//calculating V/t\n", +"//output\n", +"printf('the initial rate is %3.3e Vs^-1',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.19: determine_resistance_and_capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=14 //voltage\n", +"f=90 //frequency\n", +"i=0.4 //current\n", +"t=55 //phase\n", +"//calculation\n", +"r=v/(i*sqrt(1+tand(t)^2))// value of resistance\n", +"l=r*tand(t)/(2*f*%pi)//value of inductance\n", +"c=1/(4*%pi*%pi*f*f*l)//value of capacitance for resonance to occur\n", +"//output\n", +"printf('the value of resistance is %3.3f ohm',r)\n", +"printf('\nthe value of inductance is %3.3f H',l)\n", +"printf('\nthe value of capacitor is %3.3e F',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: force_on_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"B=4.3*10^-4//magnetic flux density\n", +"I=6.4//current \n", +"L=4.8//length of wire\n", +"t=24//inclination through the field\n", +"//calculation\n", +"f=B*I*L//force on wire when it is perpendicular\n", +"f1=B*I*L*sind(t)//force on wire when it is inclined at t degrees\n", +"//output\n", +"printf('the force on wire is %3.3f N',f)\n", +"printf('\nthe force at an anglr 24 deg is %3.3e N',f1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"i=3.4 //current passing\n", +"a=0.04 //distance from centre of cconductor\n", +"//calcution\n", +"b=(4*%pi*10^-7*5)/(2*%pi*a)//magnetic flux density\n", +"//output\n", +"printf('the flux density is %3.3e T',b)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: permeability_of_free_space.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//INPUT DATA\n", +"Ix=1 //current in first wire\n", +"Iy=1 //current in second wire\n", +"FbyL=2*10^-7 //according to the definition of ampere\n", +"a=1 //distance between the wires\n", +"\n", +"\n", +"//calculation\n", +"\n", +"m=(2*%pi*a*FbyL)/(Ix*Iy)\n", +"\n", +"\n", +"\n", +"//output\n", +"printf('the permeability of free space is %3.3e H/m ',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: faraday_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"n=10 //number of rounds\n", +"B=2*10^-2 //flux density\n", +"a=5*10^-4 //areaof cross section\n", +"t=10//time\n", +"//calculation\n", +"c=n*B*a //change in flux\n", +"emf=c/t //induced emf\n", +"//output\n", +"printf('the flux changed is %3.3e Wb ',c)\n", +"printf('\n the induced emf is %3.3e V',emf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: moment_of_couple.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"N=250 //number of turns\n", +"B=8.6*10^-4 //flux density\n", +"I=5 //current\n", +"A=16*10^-4//area\n", +"t=35\n", +"//calculation\n", +"c=B*I*A*N*sind(t)//moment of couple\n", +"x=c/(B*I*2*A*N)//doubling the area\n", +"y=asind(x)\n", +"//output\n", +"printf('the moment of couple is %3.3e Nm',c)\n", +"printf('\n the new angle produced is %3.3f deg',y)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: maximum_emf_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"a=20*10^-4 //area\n", +"n=900 //number of turns\n", +"b=5*10^-2 //flux density\n", +"i=4.5 //current\n", +"//calculation\n", +"e=b*a*n*2*%pi*30//emf induced\n", +"p=e*i//power output\n", +"//output\n", +"printf('the emf induced is %3.3f V',e)\n", +"printf('\n the power output is %3.3f W',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: pd_across_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"R=68 //resistence\n", +"i=4.5 //current\n", +"e=17 //emf\n", +"//calculation\n", +"v=(i*R)+e//supply pd\n", +"//output\n", +"printf('the supply of pd across motor is %3.0f V',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: transformer_equation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"ns=330 //number of turns of secondary\n", +"np=450 //number of turns in primary\n", +"e=0.65 //efficiency\n", +"vp=240 //ac supply of primary\n", +"//calculation\n", +"vs=e*(vp*ns)/np//transformer equation\n", +"//output\n", +"printf('the pd across secondary is %3.0f V',vs)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |