summaryrefslogtreecommitdiff
path: root/Concise_Physics_by_H_Matyaka/6-Heat.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Concise_Physics_by_H_Matyaka/6-Heat.ipynb')
-rw-r--r--Concise_Physics_by_H_Matyaka/6-Heat.ipynb446
1 files changed, 446 insertions, 0 deletions
diff --git a/Concise_Physics_by_H_Matyaka/6-Heat.ipynb b/Concise_Physics_by_H_Matyaka/6-Heat.ipynb
new file mode 100644
index 0000000..fd85183
--- /dev/null
+++ b/Concise_Physics_by_H_Matyaka/6-Heat.ipynb
@@ -0,0 +1,446 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Heat"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: gas_external_work.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"m=3*10^-2 //mass of water\n",
+"r1=1*10^3//density of water\n",
+"r2=0.5//density of steam\n",
+"p=1.01*10^5//atmospheric pressure\n",
+"//calculation\n",
+"v1=m/r1//volume of water\n",
+"v2=m/r2//volume of gas\n",
+"w=(v2-v1)*p//external work done by gas\n",
+"//output\n",
+"printf('the work done is %3.0f J',w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: platinum_resistance_theromoeter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"r100=6.9//resistence of steam\n",
+"r0=5.8 //resistece of ice\n",
+"t=550 //temperature\n",
+"//calculation\n",
+"r=(t*(r100-r0))/100 +5.8//platinum resistance thermometre\n",
+"//output\n",
+"printf('the resistence is %3.3f ohm',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: length_at_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"l=11.7//length of thermometer at steam\n",
+"l0=3.4*10^-2//length of thermometer at ice\n",
+"//calculation\n",
+"x=0.034+0.034*(0.244*10^-3*45^2)//length of temperature on standard scale\n",
+"//output\n",
+"printf('thread length is %3.3f m',x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15: heat_transfer_rate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"a=5 //area\n",
+"k=0.07 //thermal conductivity\n",
+"dt=21 //temperature difference\n",
+"x= 4*10^-3 //thickness of wood\n",
+"//calculation\n",
+"y=-(k*a*dt/x)//steady state equation\n",
+"//output\n",
+"printf('the rate of transfer is %3.3f Js^-1',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: temperature_gradient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"d=3*10^-3//thickness of sheet\n",
+"l=12*10^-3//seperated distance\n",
+"//calculation\n",
+"x=1/40//law of conservation of energy\n",
+"y=x*d/l//from x\n",
+"//output\n",
+"printf('the ratio of temperature gradient in rubber to polystyrene is %3.3f0',x)\n",
+"printf('\nthe ratio of temperature difference across rubber and polystyrene is %3.3e',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: heat_given_out.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"m=0.5 //mass\n",
+"c=460 //specific heat capacity of iron\n",
+"t1=70//initial temperature\n",
+"t2=10//final temperature\n",
+"//calculation\n",
+"q=m*c*(t1-t2)//heat required \n",
+"//output\n",
+"printf('the heat required is %3.0f J',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: potential_difference_heater.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"T=100 //rise in temperature\n",
+"i=2.7 //current\n",
+"t=950 //time taken\n",
+"mc=0.15//mass of calorimeter \n",
+"cy=3*10^3//specific heat capacity of y\n",
+"cc=2*10^3//specific heat capacity of calorimeter\n",
+"my=160*10^-3//mass of liquid\n",
+"//calculation\n",
+"v=((my*cy)+(mc*cc))*T/(i*t)//law of conservation of heat\n",
+"//output\n",
+"printf('the potential difference is %3.0f V',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: heat_loss_and_specific_heat.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"iw=4.5 //current\n",
+"vw=5.2 //pd of water\n",
+"mw=6*10^-2 //flow of water\n",
+"cw=4.18*10^3 //heat capacity of water\n",
+"ix=5.5//current of x\n",
+"iv=7.7//pd of x\n",
+"im=18*10^-2//flow of x\n",
+"//calculation\n",
+"x=(iw*vw)-((mw*cw*5)/60)//rate of heat loss\n",
+"cx=(6*4180)/18 +1263//specific heat capacity of x\n",
+"//output\n",
+"printf('the rate of heat loss is %3.3f W',x)\n",
+"printf('\n the specific heat of x is %3.3e Jkg^-1K^-1',cx)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Boyles_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+" clc\n",
+"clear\n",
+"//input\n",
+"v1=0.52 //volume of ideal gas\n",
+"p1=2.3*10^5 //pressure of ideal gas\n",
+"p2=6.7*10^5 //pressure changed\n",
+"//calculation\n",
+"v2=p1*v1/p2//boyle's law\n",
+"//output\n",
+"printf('the volume is %3.3f m^3',v2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Charles_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"v2=11.3 //final volume\n",
+"v1=7.8//initial volume\n",
+"t1=67+273 //initial temperature\n",
+"//calculation\n",
+"t2=v2*t1/v1//charles law\n",
+"//output\n",
+"printf('the final temperature is %3.0d K',t2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: pressure_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"p1=1.01*10^5//initial pressure\n",
+"t2=135+273//final temperature\n",
+"t1=273//initial temperature\n",
+"d=2.8 //density\n",
+"//calculation\n",
+"p2=p1*t2/t1//pressure law\n",
+"p=(3*p2/2.8)^0.5//kinetic theory\n",
+"//output\n",
+"printf('rms speed of gas molecule is %3.0f m/s',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: KE_and_rms_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"t1=273//initial tenperature\n",
+"t2=408//final temperature\n",
+"//calculation\n",
+"e=t1/t2//ratio of mean molecuar KE\n",
+"c1=402*sqrt(0.67)//rms speed\n",
+"//output\n",
+"printf('the ratio of kinetic energy is %3.3f',e)\n",
+"printf('\n the rms speed of gas molecule is %3.0f ms^-1',c1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: ideal_gas_equatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"p=1.01*10^7 //pressure of gas\n",
+"v=0.1 //volume of gas\n",
+"R=8.3\n",
+"T=280//temperature\n",
+"g=0.017//mass of 1 mole\n",
+"d=1100//density\n",
+"//calculation\n",
+"n=p*v/(R*T)//ideal gas equation\n",
+"m=n*g//mass of gas\n",
+"v=m/d//volume occupied\n",
+"//output\n",
+"printf('the volume is %3.3e m^3',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: Boyles_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//input\n",
+"p1=9*10^4//total pressure\n",
+"x=1*10^4//water pressure\n",
+"//calculation\n",
+"p2=(p1-x)/2//boyles law\n",
+"p=p2+x//adding vapour pressure\n",
+"//output\n",
+"printf('the final pressure is %3.0e Pa',p)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}