diff options
Diffstat (limited to 'Concise_Physics_by_H_Matyaka/6-Heat.ipynb')
-rw-r--r-- | Concise_Physics_by_H_Matyaka/6-Heat.ipynb | 446 |
1 files changed, 446 insertions, 0 deletions
diff --git a/Concise_Physics_by_H_Matyaka/6-Heat.ipynb b/Concise_Physics_by_H_Matyaka/6-Heat.ipynb new file mode 100644 index 0000000..fd85183 --- /dev/null +++ b/Concise_Physics_by_H_Matyaka/6-Heat.ipynb @@ -0,0 +1,446 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Heat" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: gas_external_work.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"m=3*10^-2 //mass of water\n", +"r1=1*10^3//density of water\n", +"r2=0.5//density of steam\n", +"p=1.01*10^5//atmospheric pressure\n", +"//calculation\n", +"v1=m/r1//volume of water\n", +"v2=m/r2//volume of gas\n", +"w=(v2-v1)*p//external work done by gas\n", +"//output\n", +"printf('the work done is %3.0f J',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: platinum_resistance_theromoeter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"r100=6.9//resistence of steam\n", +"r0=5.8 //resistece of ice\n", +"t=550 //temperature\n", +"//calculation\n", +"r=(t*(r100-r0))/100 +5.8//platinum resistance thermometre\n", +"//output\n", +"printf('the resistence is %3.3f ohm',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: length_at_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"l=11.7//length of thermometer at steam\n", +"l0=3.4*10^-2//length of thermometer at ice\n", +"//calculation\n", +"x=0.034+0.034*(0.244*10^-3*45^2)//length of temperature on standard scale\n", +"//output\n", +"printf('thread length is %3.3f m',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: heat_transfer_rate.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"a=5 //area\n", +"k=0.07 //thermal conductivity\n", +"dt=21 //temperature difference\n", +"x= 4*10^-3 //thickness of wood\n", +"//calculation\n", +"y=-(k*a*dt/x)//steady state equation\n", +"//output\n", +"printf('the rate of transfer is %3.3f Js^-1',y)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.16: temperature_gradient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"d=3*10^-3//thickness of sheet\n", +"l=12*10^-3//seperated distance\n", +"//calculation\n", +"x=1/40//law of conservation of energy\n", +"y=x*d/l//from x\n", +"//output\n", +"printf('the ratio of temperature gradient in rubber to polystyrene is %3.3f0',x)\n", +"printf('\nthe ratio of temperature difference across rubber and polystyrene is %3.3e',y)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: heat_given_out.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"m=0.5 //mass\n", +"c=460 //specific heat capacity of iron\n", +"t1=70//initial temperature\n", +"t2=10//final temperature\n", +"//calculation\n", +"q=m*c*(t1-t2)//heat required \n", +"//output\n", +"printf('the heat required is %3.0f J',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: potential_difference_heater.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"T=100 //rise in temperature\n", +"i=2.7 //current\n", +"t=950 //time taken\n", +"mc=0.15//mass of calorimeter \n", +"cy=3*10^3//specific heat capacity of y\n", +"cc=2*10^3//specific heat capacity of calorimeter\n", +"my=160*10^-3//mass of liquid\n", +"//calculation\n", +"v=((my*cy)+(mc*cc))*T/(i*t)//law of conservation of heat\n", +"//output\n", +"printf('the potential difference is %3.0f V',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: heat_loss_and_specific_heat.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"iw=4.5 //current\n", +"vw=5.2 //pd of water\n", +"mw=6*10^-2 //flow of water\n", +"cw=4.18*10^3 //heat capacity of water\n", +"ix=5.5//current of x\n", +"iv=7.7//pd of x\n", +"im=18*10^-2//flow of x\n", +"//calculation\n", +"x=(iw*vw)-((mw*cw*5)/60)//rate of heat loss\n", +"cx=(6*4180)/18 +1263//specific heat capacity of x\n", +"//output\n", +"printf('the rate of heat loss is %3.3f W',x)\n", +"printf('\n the specific heat of x is %3.3e Jkg^-1K^-1',cx)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Boyles_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +" clc\n", +"clear\n", +"//input\n", +"v1=0.52 //volume of ideal gas\n", +"p1=2.3*10^5 //pressure of ideal gas\n", +"p2=6.7*10^5 //pressure changed\n", +"//calculation\n", +"v2=p1*v1/p2//boyle's law\n", +"//output\n", +"printf('the volume is %3.3f m^3',v2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Charles_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v2=11.3 //final volume\n", +"v1=7.8//initial volume\n", +"t1=67+273 //initial temperature\n", +"//calculation\n", +"t2=v2*t1/v1//charles law\n", +"//output\n", +"printf('the final temperature is %3.0d K',t2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: pressure_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"p1=1.01*10^5//initial pressure\n", +"t2=135+273//final temperature\n", +"t1=273//initial temperature\n", +"d=2.8 //density\n", +"//calculation\n", +"p2=p1*t2/t1//pressure law\n", +"p=(3*p2/2.8)^0.5//kinetic theory\n", +"//output\n", +"printf('rms speed of gas molecule is %3.0f m/s',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: KE_and_rms_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"t1=273//initial tenperature\n", +"t2=408//final temperature\n", +"//calculation\n", +"e=t1/t2//ratio of mean molecuar KE\n", +"c1=402*sqrt(0.67)//rms speed\n", +"//output\n", +"printf('the ratio of kinetic energy is %3.3f',e)\n", +"printf('\n the rms speed of gas molecule is %3.0f ms^-1',c1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: ideal_gas_equatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"p=1.01*10^7 //pressure of gas\n", +"v=0.1 //volume of gas\n", +"R=8.3\n", +"T=280//temperature\n", +"g=0.017//mass of 1 mole\n", +"d=1100//density\n", +"//calculation\n", +"n=p*v/(R*T)//ideal gas equation\n", +"m=n*g//mass of gas\n", +"v=m/d//volume occupied\n", +"//output\n", +"printf('the volume is %3.3e m^3',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: Boyles_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"p1=9*10^4//total pressure\n", +"x=1*10^4//water pressure\n", +"//calculation\n", +"p2=(p1-x)/2//boyles law\n", +"p=p2+x//adding vapour pressure\n", +"//output\n", +"printf('the final pressure is %3.0e Pa',p)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |