diff options
Diffstat (limited to 'Concise_Physics_by_H_Matyaka/10-Physical_Optics.ipynb')
-rw-r--r-- | Concise_Physics_by_H_Matyaka/10-Physical_Optics.ipynb | 277 |
1 files changed, 277 insertions, 0 deletions
diff --git a/Concise_Physics_by_H_Matyaka/10-Physical_Optics.ipynb b/Concise_Physics_by_H_Matyaka/10-Physical_Optics.ipynb new file mode 100644 index 0000000..7557142 --- /dev/null +++ b/Concise_Physics_by_H_Matyaka/10-Physical_Optics.ipynb @@ -0,0 +1,277 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Physical Optics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: plancks_theory.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"h=6.6*10^-34 //plancks constant\n", +"c=3*10^8 //velocity of light\n", +"e1=12.34//excited state\n", +"e2=14.19//ground state\n", +"//calculation\n", +"l=(h*c)/((e2-e1)*1.6*10^-19)//conservation of energy and plancks theory\n", +"//output\n", +"printf('the wavelength is %3.3e m',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: wavelength_and_prism_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"la=0.535*10^-6//wavelength\n", +"nb=1.51//refractive index\n", +"dmin=34 //minimum deviation\n", +"//calculation\n", +"l=la/nb//wavelength of light\n", +"x=(nb-cosd(dmin/2))/sind(dmin/2)//refractive index of prism\n", +"y=acotd(x)\n", +"z=y*2\n", +"//output\n", +"printf('the wavelength of light is %3.3e m',l)\n", +"printf('\nthe angle of prism is %3.0d deg',z)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: thin_film_interference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"n=7//order of fringe\n", +"l=0.63*10^-6 //wavelength\n", +"x=24.8*10^-3 //seperation of bands\n", +"d=1.5\n", +"//calculation\n", +"a=n*d*l/x//slit seperation\n", +"//output\n", +"printf('the slit seperation is %3.3e m',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: fringe_width_determination.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"n=6//order of fringe\n", +"l=0.63*10^-6 //wavelength\n", +"x=24.8*10^-3 //seperation of bands\n", +"d=1.5\n", +"a=2.7*10^-4\n", +"//calculation\n", +"x=d*(6+1/2)*l/a//distance between centre and sixth fringe\n", +"w=l*1.6/a//fringe width\n", +"//output\n", +"printf('the distance between centre and sixth fringe is %3.3e m',x)\n", +"printf('\nthe fringe width is %3.3e m',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: increasing_thickness_effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"a=4//widge dimension\n", +"b=64//edge of tissue\n", +"c=33//bright fringes\n", +"l=0.53*10^-6 //wavelength\n", +"//calculation\n", +"m=b*c/a//number of bright fringes\n", +"t=m*l/2//thickness\n", +"//output\n", +"printf('the thickness is %3.3e m and hence number of fringes also increases',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: wavelength_and_angular_displacement.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"n1=6//6th order image\n", +"n2=5//5th order image\n", +"n=3000//lines per cm\n", +"//calculation\n", +"l=n2*0.11*10^-6/(6-5)//applying dsinx=nl\n", +"l1=l+(0.11*10^-6)//applying dsinx=nl\n", +"d=1/(n*100)//applying dsinx=nl ,grating space calculation\n", +"x=n1*l/d \n", +"y=asind(x)\n", +"//output\n", +"printf('the wavenlength of first wave is %3.3e m',l)\n", +"printf('\nthe wavenlength of second wave is %3.3e m',l1)\n", +"printf('\n the angular displacement is %3.3f deg',y)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: wavelength_and_diffraction_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"n2=1.36//refractive index\n", +"N=5000*100 //number of lines per m\n", +"t=23 //angle of diffraction\n", +"//calculation\n", +"l=sind(t)/(n2*N)//applying dsinx=nl,calculating wavelength \n", +"x=N*l//angle of diffraction\n", +"y=asind(x)\n", +"//output\n", +"printf('the wavelength of light in methanol is %3.3e m',l)\n", +"printf('\n the angle of diffraction is %3.3f degrees',y)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.8: telescope_angular_magnification.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"fo=1.5//objective's focal length\n", +"fc=0.04//eyepiece focal length\n", +"//calculation\n", +"m=fo/fc//angular magnification\n", +"v=fc*(fc+fo)/fo//distance of eye ring from eyepiece\n", +"//output\n", +"printf('the angular magnification is %3.2f',m)\n", +"printf('\n the distance of eye ring from eyepiece is %3.3f m',v)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |