summaryrefslogtreecommitdiff
path: root/Chemical_Reactor_Design_by_P_Harriott/9-Fluidized_Bed_Reactors.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Chemical_Reactor_Design_by_P_Harriott/9-Fluidized_Bed_Reactors.ipynb')
-rw-r--r--Chemical_Reactor_Design_by_P_Harriott/9-Fluidized_Bed_Reactors.ipynb162
1 files changed, 162 insertions, 0 deletions
diff --git a/Chemical_Reactor_Design_by_P_Harriott/9-Fluidized_Bed_Reactors.ipynb b/Chemical_Reactor_Design_by_P_Harriott/9-Fluidized_Bed_Reactors.ipynb
new file mode 100644
index 0000000..023819e
--- /dev/null
+++ b/Chemical_Reactor_Design_by_P_Harriott/9-Fluidized_Bed_Reactors.ipynb
@@ -0,0 +1,162 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Fluidized Bed Reactors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Model_II_Volumetric_Mass_Transfer_Coefficient_K.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.\n",
+"//Chapter-9 Ex9.1 Pg No.376\n",
+"//Title:Model II- Volumetric Mass Transfer Coefficient (K)\n",
+"//============================================================================================================\n",
+"\n",
+"clear\n",
+"clc\n",
+"//INPUT\n",
+"u0=[ 0.1 0.3 0.5 0.75 0.95 1.15];//Fluid Velocities (m/sec)\n",
+"X=[0.923 0.872 0.846 0.775 0.728 0.664];//Conversion\n",
+"h_by_h0=[1.26 1.44 1.66 2.0 2.3 2.7];//Height of bed under fluidized condition by height of packed bed\n",
+"Epsilon_m=0.456;//Fraction of voids in packed bed\n",
+"h0=0.75;//Height of packed bed (m)\n",
+"k_r=4.45 ;//Reaction rate constant(sec-1)\n",
+"W=5;//Weight of the bed (kg)\n",
+"\n",
+"\n",
+"//CALCULATION\n",
+"n=length(X);\n",
+"for i=1:n\n",
+" K0_L_by_u0(i)=log(1/(1-X(i)));//Refer equation 9.21 Pg No.371\n",
+" L(i)=h_by_h0(i)*h0;\n",
+" one_minus_epsilon(i)=(1-Epsilon_m)/h_by_h0(i); \n",
+" k_rhob(i)=k_r*one_minus_epsilon(i); \n",
+" K0(i)=K0_L_by_u0(i)*u0(i)/L(i);\n",
+" K(i)=1/((K0(i).^(-1))-(1/k_rhob(i))); //Refer equation 9.19 Pg No.371\n",
+"end\n",
+"\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('\nThe values of K for given velocities')\n",
+"mprintf('\n u (m/sec) \t K (sec-1) ');\n",
+"mprintf('\n===================================================================');\n",
+"for i=1:n\n",
+" mprintf('\n %.3g \t \t %0.3f',u0(i),K(i)); \n",
+"end\n",
+"\n",
+"//FILE OUTPUT\n",
+"fid= mopen('.\Chapter9-Ex1-Output.txt','w');\n",
+"mfprintf(fid,'\nThe values of K for given velocities')\n",
+"mfprintf(fid,'\n u (m/sec) \t K (sec-1) ');\n",
+"mfprintf(fid,'\n===================================================================');\n",
+"for i=1:n\n",
+" mfprintf(fid,'\n %.3g \t \t %0.3f',u0(i),K(i)); \n",
+"end \n",
+"\n",
+"//==============================================END OF PROGRAM============================================= \n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Model_II_Fraction_unconverted_naphthalene.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.\n",
+"//Chapter-9 Ex9.2 Pg No.389\n",
+"//Title: Model II-Fraction unconverted naphthalene\n",
+"//===========================================================================================================\n",
+"clear\n",
+"clc\n",
+"//INPUT\n",
+"D=2.13 ;//Reactor Diameter(m)\n",
+"L=7.9;//Reactor length (m)\n",
+"dp_bar= 53*10^(-6);//Particle size (m)\n",
+"u_mf=0.077;//Minimum fluidzation velocity(cm/s)\n",
+"u_mb=0.5;//Minimum bubbling velocity(cm/s)\n",
+"rho_bulk=770;//Bulk density (kg/m3)\n",
+"rho_b=350;//Density (kg/m3)\n",
+"Epsilon_m=0.44;//Porosity of bed\n",
+"T_K=636;//Reaction Temperature (K)\n",
+"P=266;//Reaction Pressure (kPa)\n",
+"k_1=1.8;//Reaction rate constant (sec-1)\n",
+"k_2=k_1;\n",
+"u0=0.43;//Velocity (m/sec)\n",
+"C0=2*10^(-2);//Initial concentration (%)\n",
+"\n",
+"//CALCULATION\n",
+"k=k_1+k_2;\n",
+"one_minus_epsilon=(1-Epsilon_m)*(rho_b/rho_bulk);\n",
+"k_corrected=k*one_minus_epsilon;//based on bed volume\n",
+"Nr=k_corrected*L/u0;\n",
+"K=0.8;//From figure 9.12 at u0=0.43m/sec Pg No.376\n",
+"Nm=K*L/u0;//Refer equation 9.21 Pg No.371\n",
+"N=1/((1/Nm)+(1/Nr));//Refer equation 9.22 Pg No.371\n",
+"X=(1-exp(-N));//Refer equation 9.23 Pg No.371\n",
+"C_out=(1-X)*C0;\n",
+"C_out_ppm=C_out*(10^6);\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('\nThe fraction of naphthalene unconverted is %0.0f ppm ',C_out_ppm);\n",
+"\n",
+"//FILE OUTPUT\n",
+"fid= mopen('.\Chapter9-Ex2-Output.txt','w');\n",
+"mfprintf(fid,'\nThe fraction of naphthalene unconverted is %0.0f ppm ',C_out_ppm);\n",
+"mclose(fid);\n",
+"\n",
+"\n",
+"//===========================================END OF PROGRAM=================================================\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}