diff options
Diffstat (limited to 'Chemical_Reactor_Design_by_P_Harriott/6-Nonideal_Flow.ipynb')
-rw-r--r-- | Chemical_Reactor_Design_by_P_Harriott/6-Nonideal_Flow.ipynb | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/Chemical_Reactor_Design_by_P_Harriott/6-Nonideal_Flow.ipynb b/Chemical_Reactor_Design_by_P_Harriott/6-Nonideal_Flow.ipynb new file mode 100644 index 0000000..086ad45 --- /dev/null +++ b/Chemical_Reactor_Design_by_P_Harriott/6-Nonideal_Flow.ipynb @@ -0,0 +1,330 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Nonideal Flow" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Power_Consumption_at_300_rpm_speed_of_stirrer_and_blending_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.\n", +"//Chapter-6 Ex6.1 Pg No.236\n", +"//Title:Power Consumption at 300 rpm,speed of stirrer and blending time\n", +"//====================================================================================================================\n", +"clear\n", +"clc\n", +"// COMMON INPUT\n", +"D_a=0.1;\n", +"D_t=0.3;\n", +"H=0.3;\n", +"N_P=5.5;\n", +"rho=1000;\n", +"n=5;\n", +"S_f=6;//Scale up factor in diameter\n", +"P_by_V_limit=10;//Pressure per unit volume (HP/1000gal)\n", +"n1=5;\n", +"Da_by_Dt1=D_a/D_t;\n", +"Da_by_Dt2=0.5;\n", +"\n", +"//CALCULATION (Ex6.1.a)\n", +"P_unit_vol=(N_P*n^3*D_a^5)/(%pi*(1/4)*D_t^2*H);\n", +"P_thousand_gal=P_unit_vol*5.067;\n", +"t=(4/n)*(D_t/D_a)^2*(H/D_t);\n", +"P_unit_vol_new=S_f^2*P_thousand_gal;\n", +"\n", +"//CALCULATION (Ex6.1.b)\n", +"n_limit=(P_by_V_limit/P_unit_vol_new)^(1/3) *n1;//Pressure per unit vol propotional to n3\n", +"t_inc_factor=n1/n_limit;//t inversely propotional to n\n", +"rotational_speed=n_limit*60;//Speed in rpm\n", +"\n", +"//CALCULATION (Ex6.1.c)\n", +"n2=(Da_by_Dt1/Da_by_Dt2)^(5/3)*n_limit;\n", +"rotaional_speed=n2*60;\n", +"t1=4*(1/Da_by_Dt1)^2*(H/D_t)*(1/n_limit);\n", +"t2=4*(1/Da_by_Dt2)^2*(H/D_t)*(1/n2);\n", +"\n", +"//OUTPUT (Ex6.1.a)\n", +"mprintf('\n OUTPUT Ex6.1.a');\n", +"mprintf('\n==========================================================');\n", +"mprintf('\n The Power consumption per unit volume at 300rpm = %.2f HP/1000 gal',P_thousand_gal);\n", +"mprintf('\n\ The Power consumption scaling up sixfold in diameter = %.0f HP/1000 gal',P_unit_vol_new); \n", +"\n", +"\n", +"//OUTPUT (Ex6.1.b)\n", +"mprintf('\n\n\n OUTPUT Ex6.1.b');\n", +"mprintf('\n==========================================================');\n", +"mprintf('\n The speed of the stirrer = %.2f sec-1 or %.0f rpm',n_limit,rotational_speed);\n", +"mprintf('\n Blending time increases by factor of %.2f ',t_inc_factor); \n", +"\n", +"//OUTPUT(Ex6.1.c)\n", +"mprintf('\n\n\n OUTPUT Ex6.1.c');\n", +"mprintf('\n==========================================================');\n", +"mprintf('\n The new stirrer speed = %.2f sec-1 or %.0f rpm',n2,rotaional_speed); \n", +"mprintf('\n The new blending time for Da/Dt ratio of 0.5 = %.1f sec',t2); \n", +"\n", +"//FILE OUTPUT\n", +"fid= mopen('.\Chapter6-Ex1-Output.txt','w');\n", +"mfprintf(fid,'\n OUTPUT Ex6.1.a');\n", +"mfprintf(fid,'\n==========================================================');\n", +"mfprintf(fid,'\n The Power consumption per unit volume at 300rpm = %.2f HP/1000 gal',P_thousand_gal);\n", +"mfprintf(fid,'\n\ The Power consumption scaling up sixfold in diameter = %.0f HP/1000 gal',P_unit_vol_new);\n", +"mfprintf(fid,'\n\n\n OUTPUT Ex6.1.b');\n", +"mfprintf(fid,'\n==========================================================');\n", +"mfprintf(fid,'\n The speed of the stirrer = %.2f sec-1 or %.0f rpm',n_limit,rotational_speed);\n", +"mfprintf(fid,'\n Blending time increases by factor of %.2f ',t_inc_factor); \n", +"mfprintf(fid,'\n\n\n OUTPUT Ex6.1.c');\n", +"mfprintf(fid,'\n==========================================================');\n", +"mfprintf(fid,'\n The new stirrer speed = %.2f sec-1 or %.0f rpm',n2,rotaional_speed); \n", +"mfprintf(fid,'\n The new blending time for Da/Dt ratio of 0.5 = %.1f sec',t2);\n", +"mclose(fid);\n", +"//======================================================END OF PROGRAM=================================================\n", +"//Disclaimer: In Ex6.1.c there is an arithematic error in the value of D_a/D_t. The value of D_a/D_t should be 11.4 instead of the value reported in the textbook for D_a/D_t=11.1." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Effect_of_diffusion_on_conversion_for_laminar_flow.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.\n", +"//Chapter-6 Ex6.2 Pg No. 239\n", +"//Title:Effect of diffusion on conversion for laminar flow \n", +"//============================================================================================================\n", +"clear\n", +"clc\n", +"//INPUT\n", +"D=1*10^(-2);//Diameter of pipeline (m)\n", +"R=D/2;//Radius (m)\n", +"D_m=10^(-4);//Diffusivity (m2/sec)\n", +"k=1;//Reaction rate constant (sec-1)\n", +"\n", +"\n", +"//CALCULATION\n", +"alpha=D_m/(k*(R^2));//Refer topic ('Diffusion in laminar flow reactors') Pg No.239\n", +"\n", +"\n", +"//OUTPUT\n", +"if (alpha<=0.01) \n", +" then\n", +" mprintf('\n The effect of radial diffusion on conversion can be neglected as alpha = %.0f',alpha )\n", +"else\n", +" mprintf('\n The effect of radial diffusion makes conversion almost as same as plug flow as alpha = %.0f',alpha)\n", +"end\n", +"\n", +"//FILE OUTPUT\n", +"fid= mopen('.\Chapter6-Ex2-Output.txt','w');\n", +"if (alpha<=0.01) \n", +" then\n", +" mfprintf(fid,'\n The effect of radial diffusion on conversion can be neglected as alpha = %.0f',alpha )\n", +"else\n", +" mfprintf(fid,'\n The effect of radial diffusion makes conversion almost as same as plug flow as alpha = %.0f',alpha)\n", +"end\n", +"mclose(fid);\n", +"//================================================END OF PROGRAM======================================================== " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Effect_of_Axial_dispersion_and_length_on_conversion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.\n", +"//Chapter-6 Ex6.3 Pg No. 248\n", +"//Title:Effect of Axial dispersion and length on conversion\n", +"//====================================================================================================================\n", +"clear\n", +"clc\n", +"// COMMON INPUT\n", +"u=1;//Superficial velocity (cm/s)\n", +"D=2*10^(-5)//Molecular Diffusivity(cm2/s)\n", +"Re=30;//Reynolds No.\n", +"Pe_a=0.25;//Peclet No. corresponding Re No. from Fig 6.10\n", +"dp=3*(10^-1);//Particle Size (cm)\n", +"L=48;//Length of the bed (cm)\n", +"X_A=0.93;//Conversion\n", +"L_old=48;// Old bed length (cm)\n", +"L_new=L_old/2;//New bed length (cm)\n", +"\n", +"\n", +"\n", +"//CALCULATION (Ex6.3.a)\n", +"Pe_dash=Pe_a*L/dp;//Refer Pg.No.247\n", +"one_minus_X_A=(1-X_A);\n", +"k_rho_L_by_u1=2.65;//From Fig6.12 for given Pe_dash\n", +"X_A1=1-exp(-k_rho_L_by_u1);\n", +"//To increase the conversion more catalyst is needed\n", +"k_rho_L_by_u2=2.85;//From Fig6.12\n", +"X_A2=1-exp(-k_rho_L_by_u2);\n", +"Percentage_excess_cat_a=((k_rho_L_by_u2-k_rho_L_by_u1)/k_rho_L_by_u1)*100;\n", +"\n", +"//CALCULATION(Ex6.3.b)\n", +"k_rho_L_by_u_new=k_rho_L_by_u1/2;\n", +"X_A_cal=(1-exp(-k_rho_L_by_u_new));//Calculated conversion\n", +"Pe_dash_new=Pe_dash/2;\n", +"k_rho_L_by_u_graph=1.3992;//Value obtained from Figure6.12 for the calculated conversion\n", +"Percentage_excess_cat_b=((k_rho_L_by_u_graph-k_rho_L_by_u_new)/k_rho_L_by_u_new)*100;\n", +"\n", +"//OUTPUT(Ex6.3.a)\n", +"mprintf('\n OUTPUT Ex6.3.a');\n", +"mprintf('\n==========================================================');\n", +"mprintf('\n The effect of axial dispersion is significant and the percentage excess of catalyst = %.0f%%',Percentage_excess_cat_a );\n", +"\n", +"//OUTPUT (Ex6.3.b)\n", +"mprintf('\n\n\n OUTPUT Ex6.3.b');\n", +"mprintf('\n==========================================================');\n", +"mprintf('\n The effect of axial dispersion is less on reducing the bed length \n The percentage excess of catalyst = %.0f%%',Percentage_excess_cat_b );\n", +"\n", +"//FILE OUTPUT\n", +"fid= mopen('.\Chapter6-Ex3-Output.txt','w');\n", +"mfprintf(fid,'\n OUTPUT Ex6.3.a');\n", +"mfprintf(fid,'\n==========================================================');\n", +"mfprintf(fid,'\n The effect of axial dispersion is significant and the percentage excess of catalyst = %.0f%%',Percentage_excess_cat_a );\n", +"mfprintf(fid,'\n\n\n OUTPUT Ex6.3.b');\n", +"mfprintf(fid,'\n==========================================================');\n", +"mfprintf(fid,'\n The effect of axial dispersion is less on reducing the bed length \n The percentage excess of catalyst = %.0f%%',Percentage_excess_cat_b );\n", +"mclose(fid);\n", +"//==============================================END OF PROGRAM=========================================================\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Conversion_in_packed_bed_for_same_superficial_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.\n", +"//Chapter-6 Ex6.4 Pg No.251\n", +"//Title:Conversion in packed bed for same superficial velocity\n", +"//====================================================================================================================\n", +"clear\n", +"clc\n", +"//COMMON INPUT \n", +"L=2.5;//Lendth of bed(ft)\n", +"X_A=0.95;//Conversion\n", +"L_a=3;//Length of section a (ft)\n", +"L_b=2;//Length of section b (ft)\n", +"u_oa_by_u0=0.88;//Refer equation 3.64\n", +"u_ob_by_u0=1.12;\n", +"L=2.5;//(ft)\n", +"\n", +"\n", +"//CALCULATION (Ex6.4.a)\n", +"k_rho_L_by_u=log(1/(1-X_A));//First Order reactions\n", +"//For Section a\n", +"k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L);\n", +"X_A_section_a=(1-exp(-k_rho_L_by_u_a));\n", +"//For Section b\n", +"k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L);//Dimensionless Group based on ideal plug flow for first order reaction\n", +"X_A_section_b=(1-exp(-k_rho_L_by_u_b));\n", +"X_A_Ave=(X_A_section_b+X_A_section_a)/2;\n", +"Percent_X_A_Ave=X_A_Ave*100\n", +"\n", +"//CALCULATION (Ex6.4.b)\n", +"k_rho_L_by_u=log(1/(1-X_A));//First Order reaction\n", +"//For Section a\n", +"k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L)*(1/u_oa_by_u0);\n", +"X_A_section_a=(1-exp(-k_rho_L_by_u_a));\n", +"delP_a_by_alpha_u0_pow=L_a*(u_oa_by_u0);//Refer equation 3.64\n", +"\n", +"//For Section b\n", +"k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L)*(1/u_ob_by_u0);//Dimensionless Group based on ideal plug flow for first order reaction\n", +"delP_b_by_alpha_u0_pow=L_b*u_ob_by_u0;\n", +"X_A_section_b=(1-exp(-k_rho_L_by_u_b));\n", +"X_A_avg=(u_oa_by_u0*X_A_section_a+u_ob_by_u0*X_A_section_b)/2;\n", +"Percent_X_A_avg=X_A_avg*100;\n", +"\n", +"//OUTPUT(Ex6.4.a)\n", +"mprintf('\n OUTPUT Ex6.4.a');\n", +"mprintf('\n==========================================================');\n", +"mprintf('\nThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );\n", +"\n", +"//OUTPUT(Ex6.4.b)\n", +"mprintf('\n\n\n OUTPUT Ex6.4.b');\n", +"mprintf('\n==========================================================');\n", +"mprintf('\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );\n", +"\n", +"//FILE OUTPUT\n", +"fid= mopen('.\Chapter6-Ex4-Output.txt','w');\n", +"mfprintf(fid,'\n OUTPUT Ex6.4.a');\n", +"mfprintf(fid,'\n==========================================================');\n", +"mfprintf(fid,'\nThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );\n", +"mfprintf(fid,'\n\n\n OUTPUT Ex6.4.b');\n", +"mfprintf(fid,'\n==========================================================');\n", +"mfprintf(fid,'\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );\n", +"mclose(fid);\n", +"//=======================================================END OF PROGRAM=================================================" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |