diff options
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_P_Ahuja/16-Other_Phase_Equilibria.ipynb')
-rw-r--r-- | Chemical_Engineering_Thermodynamics_by_P_Ahuja/16-Other_Phase_Equilibria.ipynb | 802 |
1 files changed, 802 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_P_Ahuja/16-Other_Phase_Equilibria.ipynb b/Chemical_Engineering_Thermodynamics_by_P_Ahuja/16-Other_Phase_Equilibria.ipynb new file mode 100644 index 0000000..07414a2 --- /dev/null +++ b/Chemical_Engineering_Thermodynamics_by_P_Ahuja/16-Other_Phase_Equilibria.ipynb @@ -0,0 +1,802 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Other Phase Equilibria" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.10: Determination_of_boiling_point_elevation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.10\n", +"//Page number - 583\n", +"printf('Example - 16.10 and Page number - 583\n\n');\n", +"\n", +"//Given\n", +"R = 8.314;//[J/mol*K] - universal gas constant\n", +"T_b = 373.15;//[K] - Boiling point of water\n", +"m_water = 100;//[g] - Mass of water\n", +"m_C12H22 = 5;//[g] - Mass of glucise (C12H22)\n", +"M_wt_water = 18.015;// Molecular weight of water \n", +"M_wt_C12H22 = 342.30;// Molecular weight of C12H22\n", +"mol_water = m_water/M_wt_water;//[mol] - Moles of water\n", +"mol_C12H22 = m_C12H22/M_wt_C12H22;//[mol] - Moles of C12H22\n", +"\n", +"H_vap = 540;//[cal/g] - Enthalpy change of vaporisation\n", +"H_vap = H_vap*4.186*M_wt_water;//[J/mol]\n", +"\n", +"//Mole fraction of the solute (C12H22) is given by\n", +"x_2 = mol_C12H22/(mol_C12H22+mol_water);\n", +"\n", +"//The boiling point elevation is given by\n", +"// T - T_b = (R*T_b^(2)*x_2^(2))/H_vap^(2)\n", +"\n", +"delta_T_b = (R*T_b^(2)*x_2)/(H_vap);\n", +"\n", +"printf('The elevation in boiling point is given by \n delta_T = %f C',delta_T_b);\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.11: Determination_of_osmotic_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.11\n", +"//Page number - 584\n", +"printf('Example - 16.11 and Page number - 584\n\n');\n", +"\n", +"//Given\n", +"R = 8.314;//[J/mol*K] - Universal gas constant\n", +"T = 25 + 273.15;//[K] - Surrounding temperature \n", +"den_water = 1000;//[kg/m^(3)] - Density of water\n", +"m_water = 100;//[g] - Mass of water\n", +"m_C12H22 = 5;//[g] - Mass of glucise (C12H22)\n", +"M_wt_water = 18.015;// Molecular weight of water \n", +"M_wt_C12H22 = 342.30;// Molecular weight of C12H22\n", +"mol_water = m_water/M_wt_water;//[mol] - Moles of water\n", +"mol_C12H22 = m_C12H22/M_wt_C12H22;//[mol] - Moles of C12H22\n", +"\n", +"//Mole fraction of the water is given by\n", +"x_1 = mol_water/(mol_C12H22+mol_water);\n", +"\n", +"//Molar volume of water can be calculated as\n", +"V_l_water = (1/den_water)*M_wt_water*10^(-3);//[m^(3)/mol]\n", +"\n", +"//The osmotic pressure is given by\n", +"pi = -(R*T*log(x_1))/V_l_water;//[N/m^(2)]\n", +"pi = pi*10^(-5);//[bar]\n", +"\n", +"printf('The osmotic pressure of the mixture is %f bar',pi);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.12: Determination_of_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.12\n", +"//Page number - 585\n", +"printf('Example - 16.12 and Page number - 585\n\n');\n", +"\n", +"//Given\n", +"R = 8.314;//[J/mol*K] - universal gas constant\n", +"T = 25 + 273.15;//[K] - Surrounding temperature\n", +"den_water = 1000;//[kg/m^(3)] - Density of water\n", +"m_water = 100;//[g] - Mass of water\n", +"m_NaCl = 3.5;//[g] - Mass of NaCl\n", +"M_wt_water = 18.015;// Molecular weight of water \n", +"M_wt_NaCl = 58.5;// Molecular weight of NaCl\n", +"mol_water = m_water/M_wt_water;//[mol] - Moles of water\n", +"mol_NaCl = m_NaCl/M_wt_NaCl;//[mol] - Moles of NaCl\n", +"\n", +"H_fus = -80;//[cal/g] - Enthalpy change of fusion at 0 C\n", +"H_fus = H_fus*4.186*M_wt_water;//[J/mol]\n", +"\n", +"//Mole fraction of the solute (NaCl) is given by\n", +"x_2 = mol_NaCl/(mol_NaCl+mol_water);\n", +"\n", +"//But NaCl is compietely ionized and thus each ion acts independently to lower the water mole fraction.\n", +"x_2_act = 2*x_2;// Actual mole fraction\n", +"\n", +"x_1 = 1 - x_2_act;\n", +"\n", +"//Molar volume of water can be calculated as\n", +"V_l_water = (1/den_water)*M_wt_water*10^(-3);//[m^(3)/mol]\n", +"\n", +"//The osmotic pressure is given by\n", +"pi = -(R*T*log(x_1))/V_l_water;//[N/m^(2)]\n", +"pi = pi*10^(-5);//[bar]\n", +"//The minimum pressure to desalinate sea water is nothing but the osmotic pressure\n", +"\n", +"printf('The minimum pressure to desalinate sea water is %f bar',pi);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.13: Determination_of_amount_of_precipitate.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.13\n", +"//Page number - 586\n", +"printf('Example - 16.13 and Page number - 586\n\n');\n", +"\n", +"//Given\n", +"R = 8.314;//[J/mol*K] - universal gas constant\n", +"T = 173.15;//[K] - Surrounding temperature\n", +"P = 60;//[bar]\n", +"P = P*10^(5);//[Pa] \n", +"\n", +"//componenet 1 : CO2 (1)\n", +"//componenet 2 : H2 (2)\n", +"P_1_sat = 0.1392;//[bar] - Vapour pressre of pure solid CO2\n", +"P_1_sat = P_1_sat*10^(5);//[bar]\n", +"V_s_1 = 27.6;//[cm^(3)/mol] - Molar volume of solid CO2\n", +"V_s_1 = V_s_1*10^(-6);//[m^(3)/mol]\n", +"n_1 = 0.01;//[mol] - Initial number of moles of CO2\n", +"n_2 = 0.99;//[mol] - Initial number of moles of H2\n", +"\n", +"//Let us determine the fugacity of solid CO2 (1) at 60 C and 173.15 K\n", +"// f_1 = f_1_sat*exp(V_s_1*(P-P_1_sat)/(R*T))\n", +"\n", +"//Since vapour pressure of pure solid CO2 is very small, therefore\n", +"f_1_sat = P_1_sat;\n", +"f_1 = f_1_sat*exp(V_s_1*(P-P_1_sat)/(R*T));\n", +"\n", +"//Since gas phase is ideal therefore\n", +"// y1*P = f_1\n", +"y1 = f_1/P;\n", +"\n", +"//Number of moles of H2 in vapour phase at equilibrium remains the same as initial number of moles.\n", +"//Number of moles of CO2 in vapour phase at equilibrium can be calculated as\n", +"//y1 = (n_1_eq/(n_1_eq + n_2)). Therefore\n", +"n_1_eq = n_2*y1/(1-y1);\n", +"\n", +"//Therefore moles of CO2 precipitated is\n", +"n_ppt = n_1 - n_1_eq;//[mol]\n", +"\n", +"printf('The moles of CO2 precipitated is %f mol',n_ppt);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.14: Calculation_of_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.14\n", +"//Page number - 586\n", +"printf('Example - 16.14 and Page number - 586\n\n');\n", +"\n", +"//Given\n", +"R = 8.314;//[J/mol*K] - universal gas constant\n", +"T = 350;//[K] - Surrounding temperature\n", +"\n", +"//componenet 1 : organic solid (1)\n", +"//componenet 2 : CO2 (2)\n", +"\n", +"P_1_sat = 133.3;//[N/m^(2)] - Vapour pressre of organic solid\n", +"V_s_1 = 200;//[cm^(3)/mol] - Molar volume of organic solid\n", +"V_s_1 = V_s_1*10^(-6);//[m^(3)/mol]\n", +"\n", +"///At 350 K, the values of the coefficients \n", +"B_11 = -500;//[cm^(3)/mol]\n", +"B_22 = -85;//[cm^^(3)/mol]\n", +"B_12 = -430;//[cm^(3)/mol]\n", +"\n", +"//From phase equilibrium equation of component 1, we get\n", +"// y1*P*phi_1 = f_1\n", +"// f_1 = f_1_sat*exp(V_s_1*(P-P_1_sat)/(R*T))\n", +"\n", +"//Since vapour pressure of organic solid is very small, therefore\n", +"f_1_sat = P_1_sat;\n", +"\n", +"// Now let us determine the fugacity coefficient of organic solid in the vapour mixture.\n", +"// log(phi_1) = (P/(R*T))*(B_11 + y2^(2)*del_12) \n", +"del_12 = (2*B_12 - B_11 - B_22)*10^(-6);//[m^(3)/mol]\n", +"\n", +"//It is given that the partial pressure of component 1 in the vapour mixture is 1333 N?m^(2)\n", +"// y1*P = 1333 N/m^(2) or, y1 = 1333/P\n", +"// y2 = 1- 1333/P\n", +"// log(phi_1) = (P/(R*T))*(B_11 + (1- 1333/P)^(2)*del_12)\n", +"\n", +"//The phase equilibrium equation becomes\n", +"// y1*P*phi_1 = f_1_sat*exp(V_s_1*(P-P_1_sat)/(R*T))\n", +"//Taking log on both side we have\n", +"// log(y1*P) + log(phi_1) = log(f_1_sat) + (V_s_1*(P-P_1_sat)/(R*T))\n", +"// (V_s_1*(P-P_1_sat)/(R*T)) - log(phi_1) = log(1333/133.3) = log(10)\n", +"\n", +"//substituting for log(phi_1) from previous into the above equation we get\n", +"// (V_s_1*(P-P_1_sat)/(R*T)) - (P/(R*T))*(B_11 + (1- 1333/P)^(2)*del_12) - log(10) = 0\n", +"// On simplification we get,\n", +"// 975*P^(2) - 6.7*10^(9)*P + 4.89*10^(8) = 0\n", +"// Solving the above qyadratic equation using shreedharcharya rule\n", +"\n", +"P3 = (6.7*10^(9) + ((-6.7*10^(9))^(2)-4*975*4.98*10^(8))^(1/2))/(2*975);//[Pa]\n", +"P4 = (6.7*10^(9) - ((-6.7*10^(9))^(2)-4*975*4.98*10^(8))^(1/2))/(2*975);//[Pa]\n", +"// The second value is not possible, therefore pressure of the system is P3\n", +"P3 = P3*10^(-5);//[bar]\n", +"\n", +"printf(' The total pressure of the system is %f bar',P3);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Determination_of_solubility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"funcprot(0);\n", +"\n", +"// Example - 16.1\n", +"// Page number - 564\n", +"printf('Example - 16.1 and Page number - 564\n\n');\n", +"\n", +"// Given\n", +"T = 0 + 273.15;//[K] - Temperature\n", +"P = 20*10^(5);//[Pa] - Pressure\n", +"R = 8.314;//[J/mol*K] - Universal gas constant\n", +"\n", +"//componenet 1 : methane (1)\n", +"//componenet 2 : methanol (2)\n", +"\n", +"H_constant = 1022;//[bar] - Henry's law constant\n", +"H_constant = H_constant*10^(5);//[Pa]\n", +"\n", +"// The second virial coefficients are\n", +"B_11 = -53.9;//[cm^(3)/mol]\n", +"B_11 = B_11*10^(-6);//[m^(3)/mol]\n", +"B_12 = -166;//[cm^(3)/mol]\n", +"B_12 = B_12*10^(-6);//[m^(3)/mol]\n", +"B_22 = -4068;//[cm^(3)/mol]\n", +"B_22 = B_22*10^(-6);//[m^(3)/mol]\n", +"\n", +"den_meth = 0.8102;//[g/cm^(3)] - Density of methanol at 0 C\n", +"Mol_wt_meth = 32.04;// Molecular weight of methanol\n", +"P_2_sat = 0.0401;//[bar] - Vapour pressure of methanol at 0 C\n", +"\n", +"//The molar volume of methanol can be calculated as\n", +"V_2_liq = (1/(den_meth/Mol_wt_meth))*10^(-6);//[m^(3)/mol]\n", +"\n", +"//The phase equilibrium equation of the components at high pressure\n", +"//y1*phi_1*P = x_1*H_1\n", +"//y2*phi_2*P = x_2*H_2\n", +"\n", +"//Since methane follows Henry's law therefore methanol follows the lewis-Rnadall rule\n", +"//f_2 is the fugacity of the compressed liquid which is calculated using\n", +"//f_2 = f_2_sat*exp[V_2_liq*(P - P_sat_2)/(R*T)]\n", +"//where f_2_sat can be calculated using virial equation \n", +"// log(phi_2_sat) = log(f_2_sat/P_2_sat) = (B_22*P_2_sat)/(R*T)\n", +"\n", +"f_2_sat = P_2_sat*exp((B_22*P_2_sat*10^(5))/(R*T));//[bar]\n", +"\n", +"//Putting the value of 'f_2_sat' in the expression of f_2 , we get\n", +"f_2 = f_2_sat*exp(V_2_liq*(P - P_2_sat*10^(5))/(R*T));//[bar]\n", +"\n", +"//Now let us calculate the fugacity coefficients of the species in the vapour mixture\n", +"del_12 = 2*B_12 - B_11 - B_22;//[m^(3)/mol]\n", +"\n", +"//log(phi_1) = (P/(R*T))*(B_11 + y2^(2)*del_12)\n", +"//log(phi_2) = (P/(R*T))*(B_22 + y1^(2)*del_12)\n", +"\n", +"\n", +"//The calculation procedure is to assume a value of y1, calculate 'phi_1' and 'phi_2' and calculate 'x_1' and 'x_2' from the phase equilibrium equations and see whether x_1 + x_2 = 1,if not then another value of y1 is assumed.\n", +"\n", +"y2 = 0.1;\n", +"error=10;\n", +"\n", +"while(error>0.001)\n", +" y1=1-y2;\n", +" phi_1 = exp((P/(R*T))*((B_11 + y2^(2)*del_12)));\n", +" phi_2 = exp((P/(R*T))*((B_22 + y1^(2)*del_12)));\n", +" x_1 = (y1*phi_1*P)/H_constant;\n", +" x_2 = (y2*phi_2*P)/(f_2*10^(5));\n", +" x = x_1 + x_2;\n", +" error=abs(1-x);\n", +" y2=y2 - 0.000001;\n", +"end\n", +"\n", +"printf(' The solubility of methane in methanol is given by x1 = %f\n',x_1);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: Determination_of_solubility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"// Example - 16.2\n", +"// Page number - 566\n", +"printf('Example - 16.2 and Page number - 566\n\n');\n", +"\n", +"// Given\n", +"x_C2H6_1 = 0.33*10^(-4);// Solubility of ethane in water at 25 C and 1 bar\n", +"\n", +"//componenet 1 : ethane (1)\n", +"//componenet 2 : water (2)\n", +"\n", +"// Z = 1 - 7.63*10^(3)*P - 7.22*10^(-5)*P^(2)\n", +"\n", +"//The phase equilibrium equation of ethane is\n", +"//f_1_V = x_1*H_1\n", +"//since vapour is pure gas, f_1_V = x_1*H_1 or, phi_1*P = x_1*H_1, where 'phi_1' is fugacity coefficient of pure ethane\n", +"// log(phi) = integral('Z-1)/P) from limit '0' to 'P'\n", +"\n", +"P1 = 0;\n", +"P2 = 1;\n", +"P3 = 35;\n", +"intgral = integrate('(1-7.63*10^(-3)*P-7.22*10^(-5)*P^(2)-1)/P','P',P1,P2);\n", +"phi_1_1 = exp(intgral);// - Fugacity coefficient of ethane at 1 bar\n", +"f_1_1 = phi_1_1*P2;//[bar] - Fugacity of ethane at 1 bar\n", +"\n", +"//Similarly\n", +"intgral_1 = integrate('(1-7.63*10^(-3)*P-7.22*10^(-5)*P^(2)-1)/P','P',P1,P3);\n", +"phi_1_35 = exp(intgral_1);// Fugacity coefficient of ethane at 35 bar\n", +"f_1_35 = phi_1_35*P3;//[bar] - Fugacity of ethane at 35 bar\n", +"\n", +"// At ethane pressure of 1 bar , x_C2H6_1*H_1 = phi_1_1\n", +"H_1 = phi_1_1/x_C2H6_1;//[bar] - Henry's constant\n", +"\n", +"// At ethane pressure of 35 bar , x_C2H6_35*H_1 = phi_1_35\n", +"x_C2H6_35 = f_1_35/H_1;// Solubility of ethane at 35 bar pressure\n", +"\n", +"printf('The solubility of ethane at 35 bar is given by x_C2H6 = %e',x_C2H6_35);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.3: Proving_a_mathematical_relation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.3\n", +"//Page number - 567\n", +"printf('Example - 16.3 and Page number - 567\n\n');\n", +"\n", +"//This problem involves proving a relation in which no mathematics and no calculations are involved.\n", +"//For prove refer to this example 16.3 on page number 567 of the book.\n", +"printf(' This problem involves proving a relation in which no mathematics and no calculations are involved.\n\n');\n", +"printf(' For prove refer to this example 16.3 on page number 567 of the book.')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.4: Determination_of_composition.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.4\n", +"//Page number - 571\n", +"printf('Example - 16.4 and Page number - 571\n\n');\n", +"\n", +"//Given\n", +"T = 200;//[K]\n", +"R = 8.314;//[J/mol*K] - universal gas constant\n", +"// G_E = A*x_1*x_2\n", +"A = 4000;//[J/mol]\n", +"x_1 = 0.6;// Mle fraction of feed composition\n", +"\n", +"// Since A is given to be independent of temperature\n", +"UCST = A/(2*R);//[K] - Upper critical solution temperature\n", +"printf(' The UCST of the system is %f K\n\n',UCST);\n", +"\n", +"// Since the given temperature is less than UCST therefore two phase can get formed at the given temperature.\n", +"\n", +"// x1_alpha = 1 - x1_beta\n", +"// We know that, x1_alpha*Y_1_alpha = x2_alpha*Y_2_alpha\n", +"// x1_alpha*exp[(A/(R*T))*(x2_alpha)^(2)] = (1 - x1_alpha)*exp[(A/(R*T))*(x1_alpha)^(2)]\n", +"// where use has beeen made of the fact that x1_alpha = 1 - x1_beta and x2_beta = 1 - x1_beta = x1_alpha .Taking logarithm of both side we get\n", +"// log(x1_alpha) + (A/(R*T))*(1 - x1_alpha)^(2) = log(1 - x1_alpha) + (A/(R*T))*x1_alpha^(2)\n", +"// log(x1_alpha/(1-x1_alpha)) = (A/(R*T))*(2*x1_alpha - 1)\n", +"\n", +"deff('[y]=f(x1_alpha)','y= log(x1_alpha/(1-x1_alpha)) - (A/(R*T))*(2*x1_alpha - 1)');\n", +"x1_alpha = fsolve(0.1,f);\n", +"x1_beta = fsolve(0.9,f);\n", +"// Because of symmetry 1 - x1_beta = x1_alpha\n", +"\n", +"// It can be seen that the equation, log(x1/(1-x1)) = (A/(R*T))*(2*x1 - 1) has two roots.\n", +"// The two roots acn be determined by taking different values \n", +"// Starting with x1 = 0.1, we get x1 = 0.169 as the solution and starting with x1 = 0.9,we get x1 = 0.831 as the solution.\n", +"// Thus x1 = 0.169 is the composition of phase alpha and x1 = 0.831 is of phase beta\n", +"printf(' The composition of two liquid phases in equilibrium is given by, x1_alpha = %f and x1_beta = %f\n\n',x1_alpha,x1_beta);\n", +"\n", +"// From the equilibrium data it is seen that if the feed has composition x1 less than 0.169 or more than 0.831 the liquid mixture is of single phase\n", +"// whereas if the overall (feed) composition is between 0.169 and 0.831 two phases shall be formed.\n", +"// The amounts of phases can also be calculated. The feed composition is given to be z1 = 0.6\n", +"z1 = 0.6;\n", +"// z1 = x1_alpha*alpha + x1_beta*beta\n", +"// beta = 1 - alpha\n", +"alpha = (z1-x1_beta)/(x1_alpha-x1_beta);//[mol]\n", +"Beta = 1 - alpha;//[mol]\n", +"printf(' The relative amount of phases is given by, alpha = %f mol and beta = %f mol\n\n\n',alpha,Beta);\n", +"\n", +"// the relative amounts of the phases changes with the feed composition \n", +"\n", +"//log(x1/(1-x1)) = (A/(R*T))*(2*x1 - 1)\n", +"// If the above equation has two real roots of x1 (one for phase alpha and the other for phase beta) then two liquid phases get formed\n", +"// and if it has no real roots then a homogeneous liquid mixtures is obtained.\n", +"\n", +"printf(' log(x1/(1-x1)) = (A/(R*T))*(2*x1 - 1)\n');\n", +"printf(' If the above equation has two real roots of x1 (one for phase alpha and the other for phase beta) then two liquid phases get formed\n');\n", +"printf(' and if it has no real roots then a homogeneous liquid mixture is obtained\n');\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.5: Determination_of_equilibrium_composition.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.5\n", +"//Page number - 573\n", +"printf('Example - 16.5 and Page number - 573\n\n');\n", +"\n", +"//Given\n", +"T = 300;//[K]\n", +"R = 8.314;//[J/mol*K] - universal gas constant\n", +"A = 7000;//[J/mol]\n", +"\n", +"// log(x_1/(1-x_1)) = (A/(R*T))*(2*x_1-1)\n", +"\n", +"deff('[y]=f(x_1)','y=log(x_1/(1-x_1))-((A/(R*T))*(2*x_1-1))');\n", +"\n", +"x1_alpha=fsolve(0.1,f);\n", +"\n", +"x1_beta=1-x1_alpha;\n", +"\n", +"printf('The equilibrium compositin of the two liquid phase system is given by\n x1_alpha \t = %f \n x1_beta \t = %f',x1_alpha,x1_beta);\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.6: Proving_a_mathematical_relation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.6\n", +"//Page number - 577\n", +"printf('Example - 16.6 and Page number - 577\n\n');\n", +"\n", +"//This problem involves proving a relation in which no mathematics and no calculations are involved.\n", +"//For prove refer to this example 16.6 on page number 577 of the book.\n", +"printf(' This problem involves proving a relation in which no mathematics and no calculations are involved.\n\n');\n", +"printf(' For prove refer to this example 16.6 on page number 577 of the book.')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.7: Determination_of_freezing_point_depression.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.7\n", +"//Page number - 579\n", +"printf('Example - 16.7 and Page number - 579\n\n');\n", +"\n", +"//Given\n", +"R = 8.314;//[J/mol*K] - Universal gas constant\n", +"M_wt_meth = 32;// Molecular weight of methanol \n", +"M_wt_water = 18;// Molecular weight of water \n", +"m_meth = 0.01;//[g] - Mass of methanol added per cm^(3) of solution\n", +"\n", +"//Since the concentration of methanol is very small therefore we can assume that the density of solution = pure water\n", +"den_sol = 1;//[g/cm^(3)]\n", +"\n", +"//The mole fraction of solute is given by\n", +"//x_2 = (moles of solute in cm^(3) of solution)/(moles of solute + moles of water) in 1 cm^(3) of solution\n", +"x_2 = (m_meth/M_wt_meth)/((m_meth/M_wt_meth)+((1-m_meth)/M_wt_water));\n", +"\n", +"//We know that heat of fusion of water is\n", +"H_fus = -80;//[cal/g] - Enthalpy change of fusion at 0 C\n", +"H_fus = H_fus*4.186*M_wt_water;//[J/mol]\n", +"\n", +"//Therefore freezing point depression is given by\n", +"// T - T_m = (R*(T^(2))*x_2)/H_fus\n", +"T_f = 273.15;//[K] - Freezing point of water\n", +"delta_T_f = (R*(T_f^(2))*x_2)/H_fus;//[K]\n", +"\n", +"printf('The depression in freezing point is given by \n delta_T = %f K',delta_T_f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.8: Determination_of_freezing_point.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"//Example - 16.8\n", +"//Page number - 580\n", +"printf('Example - 16.8 and Page number - 580\n\n');\n", +"//Given\n", +"R = 8.314;//[J/mol*K] - universal gas constant\n", +"T_f = 273.15;//[K] - Freezing point of water\n", +"m_water = 100;//[g] - Mass of water\n", +"m_NaCl = 3.5;//[g] - Mass of NaCl\n", +"M_wt_water = 18.015;// Molecular weight of water \n", +"M_wt_NaCl = 58.5;// Molecular weight of NaCl\n", +"mol_water = m_water/M_wt_water;//[mol] - Moles of water\n", +"mol_NaCl = m_NaCl/M_wt_NaCl;//[mol] - Moles of NaCl\n", +"H_fus = -80;//[cal/g] - Enthalpy change of fusion at 0 C\n", +"H_fus = H_fus*4.186*M_wt_water;//[J/mol]\n", +"//Mole fraction of the solute (NaCl) is given by\n", +"x_2 = mol_NaCl/(mol_NaCl+mol_water);\n", +"//But NaCl is compietely ionized and thus each ion acts independently to lower the water mole fraction.\n", +"x_2_act = 2*x_2;// Actual mole fraction\n", +"//Now depression in freezing point is given by\n", +"// T - T_m = (R*(T^(2))*x_2_act)/H_fus\n", +"delta_T_f = (R*(T_f^(2))*x_2_act)/H_fus;//[C]\n", +"//Thus freezing point of seawater = depression in freezing point\n", +"printf('The freezing point of seawater is %f C',delta_T_f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.9: Proving_a_mathematical_relation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 16.9\n", +"//Page number - 580\n", +"printf('Example - 16.9 and Page number - 580\n\n');\n", +"\n", +"//This problem involves proving a relation in which no mathematics and no calculations are involved.\n", +"//For prove refer to this example 16.9 on page number 580 of the book.\n", +"printf(' This problem involves proving a relation in which no mathematics and no calculations are involved.\n\n');\n", +"printf(' For prove refer to this example 16.9 on page number 580 of the book.')\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |