diff options
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_P_Ahuja/1-Introduction.ipynb')
-rw-r--r-- | Chemical_Engineering_Thermodynamics_by_P_Ahuja/1-Introduction.ipynb | 705 |
1 files changed, 705 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_P_Ahuja/1-Introduction.ipynb b/Chemical_Engineering_Thermodynamics_by_P_Ahuja/1-Introduction.ipynb new file mode 100644 index 0000000..289674f --- /dev/null +++ b/Chemical_Engineering_Thermodynamics_by_P_Ahuja/1-Introduction.ipynb @@ -0,0 +1,705 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Introduction" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: Calculation_of_pressure_and_temperature_at_triple_point.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.10\n", +"//Page number - 27\n", +"printf('Example - 1.10 and Page number - 27\n\n');\n", +"\n", +"//Given\n", +"// log(P)=-(1640/T)+10.56 (solid)\n", +"// log(P)=-(1159/T)+7.769 (liquid),where T is in K\n", +"// F+P=C+2, at triple point F+3=1+2 or,F=0 i.e,vapour pressure of liquid and solid at triple point are same,we get\n", +"// -(1640/T)+10.56 = -(1159/T)+7.769\n", +"\n", +"T = (1640-1159)/(10.56-7.769);//[K]\n", +"P = 10^((-1640/T)+10.56);//[torr]\n", +"\n", +"printf(' The temperature is %f K\n',T);\n", +"printf(' The pressure is %f torr (or mm Hg)',P);\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: Determination_of_value_of_R_Cp0_and_Cv0.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.11\n", +"//Page number - 29\n", +"printf('Example - 1.11 and Page number - 29\n\n');\n", +"\n", +"//Given\n", +"M_O2 = 31.999;//molecular weight of oxygen\n", +"M_N2 = 28.014;//molecular weight of nitrogen\n", +"Y = 1.4;//molar heat capacities ratio for air\n", +"\n", +"//Molecular weight of air(21 vol% O2 and 79 vol% N2)is given by\n", +"M_air = (0.21*M_O2)+(0.79*M_N2);//(vol% = mol%)\n", +"\n", +"R = 8.314;//[J/mol*K] - Universal gas constant\n", +"R = (R*1/M_air);//[kJ/kg*K]\n", +"\n", +"printf(' The value of universal gas constant (R) = %f kJ/kg-K \n',R);\n", +"\n", +"//Y=Cp0/Cv0 and Cp0-Cv0=R\n", +"Cv_0 = R/(Y-1);//[kJ/kg*K] \n", +"Cp_0 = Y*Cv_0;//[kJ/kg*K]\n", +"printf(' The value of Cp_0 for air is %f kJ/kg-K\n',Cp_0);\n", +"printf(' The value of Cv_0 for air is %f kJ/kg-K',Cv_0);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: Calculation_of_molar_heat_capacity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.12\n", +"//Page number - 30\n", +"printf('Example - 1.12 and Page number - 30\n\n');\n", +"\n", +"//Given\n", +"Y = 1.4;//molar heat capacities ratio for air\n", +"R = 8.314;// [J/mol*K] - Universal gas constant\n", +"Cv_0 = R/(Y-1);// [J/mol*K]\n", +"Cp_0 = Y*Cv_0;// [J/mol*K]\n", +"\n", +"printf(' The molar heat capacity at constant volume (Cv_0) is %f J/mol-K\n',Cv_0);\n", +"printf(' The molar heat capacity at constant pressure (Cp_0) is %f J/mol-K',Cp_0);\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.13: Determination_of_mean_heat_capacity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.13\n", +"//Page number - 30\n", +"printf('Example - 1.13 and Page number - 30\n\n');\n", +"\n", +"//Given\n", +"// Cp0=7.7+(0.04594*10^(-2)*T)+(0.2521*10^(-5)*T^(2))-(0.8587*10^(-9)*T^(3))\n", +"T_1 = 400;//[K]\n", +"T_2 = 500;//[K]\n", +"\n", +"//(C)avg = q/(T_2 - T_1) = 1/(T_2 - T_1)*{(integrate('C','T',T_1,T_2))}\n", +"//(Cp0)avg = 1/(T_2 - T_1)*{(integrate('Cp0','T',T_1,T_2))}\n", +"Cp0_avg = (1/(T_2 - T_1))*integrate('7.7+(0.04594*10^(-2)*T)+(0.2521*10^(-5)*T^(2))-(0.8587*10^(-9)*T^(3))','T',T_1,T_2);\n", +"\n", +"printf(' The mean heat capacity (Cp0_avg) for temerature range of 400 to 500 K is %f cal/mol-K',Cp0_avg);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.14: Calculation_of_enthalpy_of_water.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.14\n", +"//Page number - 31\n", +"printf('Example - 1.14 and Page number - 31\n\n');\n", +"\n", +"//Given\n", +"//(a)\n", +"P_1 = 0.2;// [MPa] - pressure\n", +"x_1 = 0.59;// mole fraction\n", +"\n", +"//From saturated steam tables at 0.2 MPa\n", +"H_liq_1 = 504.7;// [kJ/kg] - Enthalpy of saturated liquid\n", +"H_vap_1 = 2706.7;// [kJ/kg]- Enthalpy of saturated vapour\n", +"H_1 = (H_liq_1*(1-x_1))+(x_1*H_vap_1);// [kJ/kg]\n", +"printf(' (a).Enthalpy of 1 kg of water in tank is %f kJ/kg\n',H_1);\n", +"\n", +"//(b)\n", +"T_2 = 120.23;// [C] - temperature\n", +"V_2 = 0.6;// [m^(3)/kg] - specific volume\n", +"\n", +"//From saturated steam tables at 120.23 C, as reported in the book\n", +"V_liq_2=0.001061;// [m^(3)/kg]\n", +"V_vap_2=0.8857;// [m^(3)/kg]\n", +"//since V_2 < Vv_2,dryness factor will be given by, V = ((1-x)*V_liq)+(x*V_vap)\n", +"x_2 = (V_2- V_liq_2)/(V_vap_2 - V_liq_2);\n", +"\n", +"//From steam table,at 120.2 C,the vapour pressure of water is 0.2 MPa.So,enthalpy is given by\n", +"H_2 = (H_liq_1*(1-x_2))+(H_vap_1*x_2);//kJ/kg]\n", +"printf(' (b).Enthalpy of saturated steam is %f kJ/kg\n',H_2);\n", +"\n", +"//(c)\n", +"P_3 = 2.5;//[MPa]\n", +"T_3 = 350;//[C]\n", +"//From steam tables at 2.5 MPa,T_sat = 223.99 C,as reported in the book\n", +"//since,T_3 > Tsat, steam is superheated\n", +"printf(' (c).As steam is superheated,from steam table,enthalpy (H) is 3126.3 kJ/kg\n');\n", +"\n", +"//(d)\n", +"T_4 = 350;//[C]\n", +"V_4 = 0.13857;//[m^(3)/kg]\n", +"//From steam table,at 350 C, V_liq = 0.001740 m^(3)/kg and V_vap = 0.008813 m^(3)/kg.Since,V > V_vap,therefore it is superheated.\n", +"//From steam table at 350 C and 1.6 MPa, V = 0.17456 m^(3)/kg\n", +"//At 350 C and 2.0 MPa, V = 0.13857 m^(3)/kg. So,\n", +"printf(' (d).The enthalpy of superheated steam (H) is 3137.0 kJ/kg\n');\n", +"\n", +"//(e)\n", +"P_4 = 2.0;//[MPa]\n", +"U_4 = 2900;// [kJ/kg] - internal energy\n", +"//From saturated table at 2.0 MPa, U_liq = 906.44kJ and U_vap = 2600.3 kJ/kg\n", +"//scince,U_4 > Uv, it is saturated.\n", +"//From superheated steam table at 2.0 MPa and 350 C, as reported in the book\n", +"U_1 = 2859.8;//[kJ/kg]\n", +"H_1 = 3137.0;//[kJ/kg]\n", +"//At 2.0 MPa and 400 C,\n", +"U_2 = 2945.2;//[kJ/kg]\n", +"H_2 = 3247.6;//[kJ/kg]\n", +"T = (((U_4 - U_1)/(U_2 - U_1))*(400 - 350)) + 350;//[C] - By interpolation\n", +"H = (((T - 350)/(400 - 350))*(H_2 - H_1)) + H_1;//[kJ/kg]\n", +"printf(' (e).The enthalpy value (of superheated steam) obtained after interpolation is %f kJ/kg\n',H);\n", +"\n", +"//(f)\n", +"P_5 = 2.5;//[MPa]\n", +"T_5 = 100;//[C]\n", +"//At 100 C,P_sat=101350 N/m^(2). Since P_5 > P_sat,it is compressed liquid\n", +"P_sat = 0.101350;//[MPa]\n", +"H_liq = 419.04;//[kJ/kg] - At 100 C and 0.10135 MPa\n", +"V_liq = 0.001044;//[m^(3)/kg] - At 100 C and 0.10135 MPa\n", +"H_0 = H_liq + (V_liq*(P_5 - P_sat))*1000;//kJ/kg]\n", +"printf(' (f).The enthalpy of compressed liquid is %f kJ/kg\n',H_0);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Calculation_of_pressure_and_heat_transfer_in_piston_cylinder_assembly.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.1 \n", +"//Page number - 6\n", +"printf('Example - 1.1 and Page number - 6\n\n');\n", +"\n", +"//(a)\n", +"// The pressure in the cylinder is due to the weight of the piston and due to surroundings pressure\n", +"m = 50;//[kg] - Mass of piston\n", +"A = 0.05;//[m^(2)] - Area of piston\n", +"g = 9.81;//[m/s^(2)] - Acceleration due to gravity\n", +"Po = 101325;//[N/m^(2)] - Atmospheric pressure\n", +"P = (m*g/A)+Po;//[N/m^(2)]\n", +"P = P/100000;//[bar]\n", +"printf(' (a).Pressure = %f bar\n',P);\n", +"\n", +"//(b)\n", +"printf(' (b).Since the piston weight and surroundings pressure are the same,the gas pressure in the piston-cylinder assembly remains %f bar',P);\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Calculation_of_mass_of_air_contained_in_a_room.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.2\n", +"//Page number - 8\n", +"printf('Example - 1.2 and Page number - 8\n\n');\n", +"\n", +"// Given\n", +"P = 1;//[atm] - Atmospheric pressure\n", +"P = 101325;//[N/m^(2)]\n", +"R = 8.314;//[J/mol*K] - Universal gas constant\n", +"T = 30;//[C] - Temperature of air\n", +"T = 30+273.15;//[K]\n", +"V = 5*5*5;//[m^(3)] - Volume of the room\n", +"\n", +"//The number of moles of air is given by\n", +"n = (P*V)/(R*T);//[mol]\n", +"\n", +"//Molecular weight of air(21 vol% O2 and 79 vol% N2)=(0.21*32)+(0.79*28)= 28.84 g/mol\n", +"m = n*28.84;//[g]\n", +"m = m/1000;//[kg]\n", +"printf('The mass of air is, m = %f kg',m);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Determination_of_work_done.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.3\n", +"//Page number - 13\n", +"printf('Example - 1.3 and Page number - 13\n\n');\n", +"\n", +"// Given\n", +"P1 = 3;// [bar] - initial pressure\n", +"V1 = 0.5;// [m^(3)] - initial volume\n", +"V2 = 1.0;// [m^(3)] - final volume\n", +"\n", +"//(a)\n", +"n = 1.5;\n", +"\n", +"//Let P*V^(n)=C //Given relation\n", +"//W (work done per mole)= (integrate('P','V',V1,V2))\n", +"//W = (integrate('(C/V^(n))','V',V1,V2)) = (C*((V2^*(1-n))-(V1^*(1-n))))/(1-n)\n", +"//Where C=P*V^(n)=P1*V1^(n)=P2*V2^(n)\n", +"//Thus w=((P2*V2^(n)*V2^(1-n))-(P1*V1^(n)*V1^(1-n)))/(1-n)\n", +"//w = ((P2*V2^(n))-(P1*V1^(n)))/(1-n)\n", +"//and thus W=((P2*V2)-(P1*V1))/(1-n)\n", +"//The above expression is valid for all values of n,except n=1.0\n", +"P2 = (P1*((V1/V2)^(n)));//[bar] //pressure at state 2\n", +"\n", +"//we have,(V1/V2)=(V1t/(V2t),since the number of moles are constant.Thus\n", +"W = ((P2*V2)-(P1*V1))/(1-n)*10^(5);//[J]\n", +"W = W/1000;//[kJ]\n", +"printf(' (a).The work done (for n=1.5) is %f kJ\n',W);\n", +"\n", +"//(b)\n", +"//For n=1.0,we have, PV=C.\n", +"// w(wok done per mol)= (integrate('P','V',V1,V2)) = (integrate('C/V','V',V1,V2)) = C*ln(V2/V1)=P1*V1*ln(V2/V1)\n", +"W1 = P1*V1*log(V2/V1)*10^(5);//[J]\n", +"W1 = W1/1000;//[kJ]\n", +"printf(' (b).The work done (for n=1.0) is %f kJ\n',W1);\n", +"\n", +"//(c)\n", +"//For n=0,we get P=Constant and thus\n", +"P = P1;//[bar]\n", +"// w =(integrate('P','V',V1,V2)) = P*(V2-V1)\n", +"W2 = P*(V2-V1)*10^(5);//[J]\n", +"W2 = W2/1000;//[kJ]\n", +"printf(' (c).The work done (for n=0) is %f kJ\n\n',W2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Determination_of_wind_energy_per_unit_mass_and_diameter_of_the_wind_turbine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.4\n", +"//Page number - 17\n", +"printf('Example - 1.4 and Page number - 17\n\n');\n", +"\n", +"//(a)\n", +"//Given\n", +"V = 9;// [m/s] - velocity\n", +"d = 1;//[m] - diameter\n", +"A = 3.14*(d/2)^(2);//[m^(2)] - area\n", +"P = 1;//[atm] - pressure\n", +"P = 101325;// [N/m^(2)]\n", +"T = 300;//[K] - Temperature\n", +"R = 8.314;//[J/mol*K] - Universal gas constant\n", +"\n", +"E = (V^(2))/2;//[J/kg]\n", +"printf(' (a).The wind energy per unit mass of air is %f J/kg\n',E);\n", +"\n", +"//(b)\n", +"// Molecular weight of air(21 vol% O2 and 79 vol% N2)=(0.21*32)+(0.79*28)= 28.84 g/mol\n", +"M = 28.84*10^(-3);//[kg/mol]\n", +"r = (P*M)/(R*T);//[kg/m^(3)] - density\n", +"m = r*V*A;// [kg/s] - mass flow rate of air\n", +"pi = m*E;//[Watt] - power input\n", +"printf(' (b).The wind power input to the turbine is %f Watt',pi);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Determination_of_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.5\n", +"//Page number - 23\n", +"printf('Example - 1.5 and Page number - 23\n\n');\n", +"\n", +"// Given\n", +"P = 1;// [bar] - atospheric pressure\n", +"P1guz = 0.75;// [bar] - gauze pressure in 1st evaporator\n", +"P2Vguz = 0.25;// [bar] - vaccum gauze pressure in 2nd evaporator\n", +"P1abs = P + P1guz;// [bar] - absolute pressure in 1st evaporator\n", +"P2abs = P - P2Vguz;// [bar] -absolute pressure in 2nd evaporator\n", +"\n", +"//From saturated steam table as reported in the book\n", +"printf(' For P1abs (absolute pressure) = %f bar\n',P1abs);\n", +"printf(' The saturation temperature in first evaporator is 116.04 C\n\n');\n", +"printf(' For P2abs (absolute pressure) = %f bar\n',P2abs);\n", +"printf(' The saturation temperature in second evaporator is 91.76 C\n');\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Calculation_of_dryness_fraction_of_steam.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.6\n", +"//Page number - 23\n", +"printf('Example - 1.6 and Page number - 23\n\n');\n", +"\n", +"// Given\n", +"V = 1;// [kg] - volume of tank\n", +"P = 10;// [bar] - pressure\n", +"\n", +"//Here degree of freedom =1(C=1,P=2,threfore F=1)\n", +"//From steam table at 10 bar as reported in the book\n", +"V_liq = 0.001127;// [m^(3)/kg] - volume in liquid phase\n", +"V_vap = 0.19444;// [m^(3)/kg] - volume in vapour phase\n", +"\n", +"//x*Vv=(1-x)*Vl // since two volumes are equal\n", +"x = (V_liq/(V_liq+V_vap));// [kg]\n", +"y = (1-x);//[kg]\n", +"\n", +"printf(' Mass of saturated vapour is %f kg\n',x);\n", +"printf(' Mass of saturated liquid is %f kg',y);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: Determination_of_pressure_mass_and_volume.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.7\n", +"//Page number - 23\n", +"printf('Example - 1.7 and Page number - 23\n\n');\n", +"\n", +"// Given\n", +"V = 1;// [m^(3)] - volume of tank\n", +"M = 10;// [m^(3)] - total mass\n", +"T = (90+273.15);//[K] - temperature\n", +"\n", +"//From steam table at 90 C as reported in the book\n", +"//vapour pressure(pressure of rigid tank) = 70.14[kPa] = 0.7014[bar]\n", +"printf(' Pressure of tank = 0.7014 bar\n');\n", +"\n", +"V_liq_sat=0.001036;// [m^(3)/kg] - saturated liquid specific volume\n", +"V_vap_sat=2.36056;// [m^(3)/kg] - saturated vapour specific volume\n", +"\n", +"//1=(V_liq_sat*(10-x))+(V_vap_sat*x)\n", +"x = (1-(10*V_liq_sat))/(V_vap_sat-V_liq_sat);//[kg]\n", +"y = (10-x);//[kg]\n", +"\n", +"printf(' The amount of saturated liquid is %f kg\n',y);\n", +"printf(' The amount of saturated vapour is %f kg \n',x);\n", +"\n", +"z = y*V_liq_sat;//[m^(3)] - Volume of saturated liquid \n", +"w = x*V_vap_sat;//[m^(3)] - Volume of saturated vapour\n", +"\n", +"printf(' Total volume of saturated liquid is %f m^(3)\n',z);\n", +"printf(' Total volume of saturated vapour is %f m^(3)',w);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Determination_of_heat_supplied.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.8\n", +"//Page number - 24\n", +"printf('Example - 1.8 and Page number - 24\n\n');\n", +"\n", +"// Given\n", +"V = 10;// [m^(3)] - volume of vessel\n", +"P_1 = 1;// [bar] - initial pressure\n", +"V_liq_sat = 0.05;// [m^(3)] - saturated liquid volume\n", +"V_gas_sat = 9.95;// [m^(3)] - saturated vapour volume\n", +"\n", +"//At 1 bar pressure\n", +"V_liq_1 = 0.001043;// [m^(3/kg)] - specific saturated liquid volume\n", +"U_liq_1 = 417.33;// [kJ/kg] - specific internal energy\n", +"V_gas_1 = 1.69400;// [m^(3/kg)] - specific saturated vapour volume\n", +"U_gas_1 = 2506.06;// [kJ/kg]\n", +"\n", +"M_liq_1 = V_liq_sat/V_liq_1;// [kg] - mass of saturated liqid\n", +"M_gas_1 = V_gas_sat/V_gas_1;// [kg] - mass of saturated vapour\n", +"M = (M_liq_1+M_gas_1);// [kg] - total mass\n", +"U_1t = (M_liq_1*U_liq_1)+(M_gas_1*U_gas_1);// [kJ] - initial internal energy\n", +"V_gas_2 = (V/M);//[m^(3/kg)]\n", +"\n", +"//from steam table at 10 bar pressure as reported in the book\n", +"V_vap_2 = 0.19444;// [m^(3/kg)]\n", +"U_vap_2 = 2583.64;// [kJ/kg]\n", +"\n", +"//from steam table at 11 bar pressure as reported in the book\n", +"V_vap_3 = 0.17753;//[m^(3/kg)]\n", +"U_vap_3 = 2586.40;//[kJ/kg]\n", +"\n", +"//Now computing pressure when molar volume of saturated vapour=Vg_2\n", +"//By interpolation (P2-10)/(11-10)=(Vg_2-Vv_2)/(Vv_3-Vv_2)\n", +"P_2 = (((V_gas_2 - V_vap_2)/(V_vap_3 - V_vap_2)*1)+10);// [bar] - final pressure\n", +"\n", +"//By interpolation calculating internal energy at state 2\n", +"//(P2-10)/(11-10)=(U2-Uv_2)/(Uv_3-Uv_2)\n", +"U_2 = (((P_2-10)/(11-10))*(U_vap_3 - U_vap_2))+U_vap_2;//[kJ/kg]\n", +"U_2t = U_2*M;//[kJ]\n", +"H = U_2t - U_1t;//[kJ] - Heat supplied\n", +"H = H/1000;//[MJ]\n", +"\n", +"printf(' Total heat supplied is %f MJ',H);\n", +"// since volume is constant,no work is done by the system and heat supplied is used in increasing the internal energy of the system.\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Calculation_of_saturation_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//Example - 1.9\n", +"//Page number - 26\n", +"printf('Example - 1.9 and Page number - 26\n\n');\n", +"\n", +"//Given\n", +"//Antoine equation for water ln(Psat)=16.262-(3799.89/(T_sat + 226.35))\n", +"P = 2;//[atm] - Pressure\n", +"P = (2*101325)/1000;//[kPa]\n", +"\n", +"P_sat = P;// Saturation pressure\n", +"T_sat = (3799.89/(16.262-log(P_sat)))-226.35;//[C] - Saturation temperature\n", +"//Thus boiling at 2 atm occurs at Tsat = 120.66 C.\n", +"\n", +"//From steam tables,at 2 bar,Tsat = 120.23 C and at 2.25 bar,Tsat = 124.0 C\n", +"//From interpolation for T_sat = 120.66 C,P = 2.0265 bar\n", +"//For P_= 2.0265 bar,T_sat, from steam table by interpolation is given by\n", +"//((2.0265-2)/(2.25-2))=((Tsat-120.23)/(124.0-120.23))\n", +"T_sat_0 = (((2.0265-2)/(2.25-2))*(124.0-120.23))+120.23;//[C]\n", +"\n", +"printf(' Saturation temperature (Tsat) = %f C which is close to %f C as determined from Antoine equation',T_sat_0,T_sat);\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |