summaryrefslogtreecommitdiff
path: root/Basic_Engineering_Thermodynamics_by_R_Joel/8-Combustion.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/8-Combustion.ipynb')
-rw-r--r--Basic_Engineering_Thermodynamics_by_R_Joel/8-Combustion.ipynb1321
1 files changed, 1321 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/8-Combustion.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/8-Combustion.ipynb
new file mode 100644
index 0000000..9e0474e
--- /dev/null
+++ b/Basic_Engineering_Thermodynamics_by_R_Joel/8-Combustion.ipynb
@@ -0,0 +1,1321 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Combustion"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: volumetric_composition_of_products.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.10');\n",
+"\n",
+"// aim : To determine\n",
+"// volumetric composition of the products of combustion\n",
+"\n",
+"// given values\n",
+"C = .86;// mass composition of carbon\n",
+"H = .14;// mass composition of hydrogen\n",
+"Ea = .20;// excess air for combustion\n",
+"O2 = .23;// mass composition of O2 in air \n",
+"\n",
+"MCO2 = 44;// moleculer mass of CO2\n",
+"MH2O = 18;// moleculer mass of H2O\n",
+"MO2 = 32;// moleculer mass of O2\n",
+"MN2 = 28;// moleculer mass of N2,\n",
+"\n",
+"\n",
+"// solution\n",
+"sO2 = (8/3*C+8*H);// stoichiometric O2 required, [kg/kg petrol]\n",
+"sair = sO2/O2;// stoichiometric air required, [kg/kg petrol]\n",
+"// for one kg petrol\n",
+"mCO2 = 11/3*C;// mass of CO2,[kg]\n",
+"mH2O = 9*H;// mass of H2O, [kg]\n",
+"mO2 = Ea*sO2;// mass of O2, [kg]\n",
+"mN2 = 14.84*(1+Ea)*(1-O2);// mass of N2, [kg]\n",
+"\n",
+"mt = mCO2+mH2O+mO2+mN2;// total mass, [kg]\n",
+"// percentage mass composition\n",
+"x1 = mCO2/mt*100;// mass composition of CO2\n",
+"x2 = mH2O/mt*100;// mass composition of H2O\n",
+"x3 = mO2/mt*100;// mass composition of O2\n",
+"x4 = mN2/mt*100;// mass composition of N2\n",
+"\n",
+"vt = x1/MCO2+x2/MH2O+x3/MO2+x4/MN2;// total volume of petrol\n",
+"v1 = x1/MCO2/vt*100;// %age composition of CO2 by volume\n",
+"v2 = x2/MH2O/vt*100;// %age composition of H2O by volume\n",
+"v3 = x3/MO2/vt*100;// %age composition of O2 by volume\n",
+"v4 = x4/MN2/vt*100;// %age composition of N2 by volume\n",
+" \n",
+"mprintf('\nThe percentage composition of CO2 by volume is = %f\n,\nThe percentage composition of H2O by volume is = %f\n,\nThe percentage composition of O2 by volume is = %f\n,\nThe percentage composition of N2 by volume is = %f\n',v1,v2,v3,v4);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11: energy_carried_away.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.11');\n",
+"\n",
+"// aim : To determine\n",
+"// the energy carried away by the dry flue gas/kg of fuel burned\n",
+"\n",
+"// given values\n",
+"C = .78;// mass composition of carbon\n",
+"H2 = .06;// mass composition of hydrogen\n",
+"O2 = .09;// mass composition of oxygen\n",
+"Ash = .07;// mass composition of ash\n",
+"Ea = .50;// excess air for combustion\n",
+"aO2 = .23;// mass composition of O2 in air \n",
+"Tb = 273+20;// boiler house temperature, [K]\n",
+"Tf = 273+320;// flue gas temperature, [K]\n",
+"c = 1.006;// specific heat capacity of dry flue gas, [kJ/kg K]\n",
+"\n",
+"// solution\n",
+"// for one kg of fuel\n",
+"sO2 = (8/3*C+8*H2);// stoichiometric O2 required, [kg/kg fuel]\n",
+"sO2a = sO2-O2;// stoichiometric O2 required from air, [kg/kg fuel]\n",
+"sair = sO2a/aO2;// stoichiometric air required, [kg/kg fuel]\n",
+"ma = sair*(1+Ea);// actual air supplied/kg of fuel, [kg]\n",
+"// total mass of flue gas/kg fuel is\n",
+"mf = ma+1;// [kg]\n",
+"mH2 = 9*H2;//H2 produced, [kg] \n",
+"// hence, mass of dry flue gas/kg coall is\n",
+"m = mf-mH2;// [kg]\n",
+"Q = m*c*(Tf-Tb);// energy carried away by flue gas, [kJ]\n",
+"mprintf('\n The energy carried away by the dry flue gas/kg is = %f kg\n',Q);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12: stoichiometric_volume_and_composition_of_products.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.12');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the stoichiometric volume of air for the complete combustion of 1 m^3\n",
+"// (b) the percentage volumetric analysis of the products of combustion\n",
+"\n",
+"// given values\n",
+"N2 = .018;// volumetric composition of N2\n",
+"CH4 = .94;// volumetric composition of CH4\n",
+"C2H6 = .035;// volumetric composition of C2H6\n",
+"C3H8 = .007;// volumetric composition of C3H8\n",
+"aO2 = .21;// O2 composition in air\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"// for CH4\n",
+"// CH4 +2 O2= CO2 + 2 H2O\n",
+"sva1 = 2/aO2;// stoichiometric volume of air, [m^3/m^3 CH4]\n",
+"svn1 = sva1*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 CH4]\n",
+"\n",
+"// for C2H6\n",
+"// 2 C2H6 +7 O2= 4 CO2 + 6 H2O\n",
+"sva2 = 7/2/aO2;// stoichiometric volume of air, [m^3/m^3 C2H6]\n",
+"svn2 = sva2*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 C2H6]\n",
+"\n",
+"// for C3H8\n",
+"// C3H8 +5 O2=3 CO2 + 4 H2O\n",
+"sva3 = 5/aO2;// stoichiometric volume of air, [m^3/m^3 C3H8]\n",
+"svn3 = sva3*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 C3H8]\n",
+"\n",
+"Sva = CH4*sva1+C2H6*sva2+C3H8*sva3;// stoichiometric volume of air required, [m^3/m^3 gas]\n",
+"mprintf('\n (a) The stoichiometric volume of air for the complete combustion = %f m^3m^3 gas\n',Sva);\n",
+"\n",
+"// (b)\n",
+"// for one m^3 of natural gas\n",
+"vCO2 = CH4*1+C2H6*2+C3H8*3;// volume of CO2 produced, [m^3]\n",
+"vH2O = CH4*2+C2H6*3+C3H8*4;// volume of H2O produced, [m^3]\n",
+"vN2 = CH4*svn1+C2H6*svn2+C3H8*svn3+N2;// volume of N2 produced, [m^3]\n",
+"\n",
+"vg = vCO2+vH2O+vN2;// total volume of gas, [m^3]\n",
+"x1 = vCO2/vg*100;// volume percentage of CO2 produced\n",
+"x2 = vH2O/vg*100;// volume percentage of H2O produced\n",
+"x3 = vN2/vg*100;// volume percentage of N2 produced\n",
+"\n",
+"mprintf('\n (b) The percentage volumetric composition of CO2 in produced is = %f\n,\n The percentage volumetric composition of H2O in produced is = %f\n,\n The percentage volumetric composition of N2 in produced is = %f\n',x1,x2,x3);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13: volume_and_composition_by_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.13');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the volume of air taken by the fan\n",
+"// (b) the percentage composition of dry flue gas\n",
+"\n",
+"// gien values\n",
+"C = .82;// mass composition of carbon\n",
+"H = .08;// mass composition of hydrogen\n",
+" O = .03;// mass composition of oxygen\n",
+" A = .07;// mass composition of ash\n",
+"mc = .19;// coal uses, [kg/s] \n",
+" ea = .3;// percentage excess air of oxygen in the air required for combustion\n",
+"Oa = .23;// percentage of oxygen by mass in the air\n",
+" \n",
+" // solution\n",
+" // (a)\n",
+" P = 100;// air pressure, [kN/m^2]\n",
+" T = 18+273;// air temperature, [K]\n",
+" R = .287;// [kJ/kg K]\n",
+" // basis one kg coal\n",
+" sO2 = 8/3*C+8*H;// stoichiometric O2 required, [kg]\n",
+" aO2 = sO2-.03;// actual O2 required, [kg]\n",
+"tO2 = aO2/Oa;// theoretical O2 required, [kg]\n",
+"Aa = tO2*(1+ea);// actual air supplied, [kg]\n",
+"m = Aa*mc;// Air supplied, [kg/s]\n",
+"\n",
+"// now using P*V=m*R*T\n",
+"V = m*R*T/P;// volume of air taken ,[m^3/s]\n",
+"mprintf('\n (a) Volume of air taken by fan is = %f m^3/s\n',V);\n",
+"\n",
+"// (b)\n",
+"mCO2 = 11/3*C;// mass of CO2 produced, [kg]\n",
+"mO2 = aO2*.3;// mass of O2 produces, [kg]\n",
+"mN2 = Aa*.77;// mass of N2 produced, [[kg]\n",
+"mt = mCO2+mO2+mN2;// total mass, [kg]\n",
+"\n",
+"mprintf('\n (b) Percentage mass composition of CO2 is = %f percent \n',mCO2/mt*100);\n",
+"mprintf('\n Percentage mass composition of O2 is = %f percent\n',mO2/mt*100)\n",
+"mprintf('\n Percentage mass composition of N2 is = %f percent \n',mN2/mt*100)\n",
+"\n",
+"\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14: mass_and_volume.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.14');\n",
+"\n",
+"// aim : To determine \n",
+"// (a) the mass of fuel used per cycle\n",
+"// (b) the actual mass of air taken in per cycle\n",
+"// (c) the volume of air taken in per cycle\n",
+"\n",
+"// given values\n",
+"W = 15;// work done, [kJ/s]\n",
+"N = 5;// speed, [rev/s]\n",
+"C = .84;// mass composition of carbon\n",
+"H = .16;// mass composition of hydrogen\n",
+"ea = 1;// percentage excess air supplied \n",
+"CV = 45000;// calorificvalue of fuel, [kJ/kg]\n",
+"n_the = .3;// thermal efficiency\n",
+"P = 100;// pressuer, [kN/m^2]\n",
+"T = 273+15;// temperature, [K]\n",
+"R = .29;// gas constant, [kJ/kg K]\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"E = W*2/N/n_the;// energy supplied, [kJ/cycle]\n",
+"mf = E/CV;// mass of fuell used, [kg]\n",
+"mprintf('\n (a) Mass of fuel used per cycle is = %f g\n',mf*10^3);\n",
+"\n",
+"// (b)\n",
+"// basis 1 kg fuel\n",
+"mO2 = C*8/3+8*H;// mass of O2 requirea, [kg]\n",
+"smO2 = mO2/.23;// stoichiometric mass of air, [kg]\n",
+"ma = smO2*(1+ea);// actual mass of air supplied, [kg]\n",
+"m = ma*mf;// mass of air supplied, [kg/cycle]\n",
+"mprintf('\n (b) The mass of air supplied per cycle is = %f kg\n',m);\n",
+"\n",
+"// (c)\n",
+"V = m*R*T/P;// volume of air, [m^3]\n",
+"mprintf('\n (c) The volume of air taken in per cycle is = %f m^3\n',V);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15: mass_and_composition.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.15');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the mass of coal used per hour\n",
+"// (b) the mass of air used per hour\n",
+"// (c) the percentage analysis of the flue gases by mass\n",
+"\n",
+"// given values\n",
+"m = 900;// mass of steam boiler generate/h, [kg]\n",
+"x = .96;// steam dryness fraction\n",
+"P = 1400;// steam pressure, [kN/m^2]\n",
+"Tf = 52;// feed water temperature, [C]\n",
+"BE = .71;// boiler efficiency\n",
+"CV = 33000;// calorific value of coal, [kJkg[\n",
+"ea = .22;// excess air supply\n",
+"aO2 = .23;// oxygen composition in air\n",
+"c = 4.187;// specific heat capacity of water, [kJ/kg K]\n",
+"\n",
+"// coal composition\n",
+"C = .83;// mass composition of carbon\n",
+"H2 = .05;// mass composition of hydrogen\n",
+"O2 = .03;// mass composition of oxygen\n",
+"ash = .09;// mass composition of ash\n",
+"\n",
+"// solution\n",
+"// from steam table at pressure P\n",
+"hf = 830.1;// specific enthalpy, [kJ/kg]\n",
+"hfg = 1957.1;// specific enthalpy, [kJ/kg]\n",
+"hg = 2728.8;// specific enthalpy, [kJ/kg]\n",
+"\n",
+"// (a)\n",
+"h = hf+x*hfg;// specific enthalpy of steam generated by boiler, [kJ/kg]\n",
+"hfw = c*Tf;// specific enthalpy of feed water, [kJ/kg]\n",
+"Q = m*(h-hfw);// energy to steam/h, [kJ]\n",
+"Qf = Q/BE;// energy required from fuel/h, [kJ]\n",
+"mc = Qf/CV;// mass of coal/h,[kg]\n",
+"mprintf('\n (a) The mass of coal used per hour is = %f kg\n',mc);\n",
+"\n",
+"// (b)\n",
+"// for one kg coal\n",
+"mO2 = 8/3*C+8*H2+-O2;// actual mass of O2 required, [kg]\n",
+"mta = mO2/aO2;// theoretical mass of air, [kg]\n",
+"ma = mta*(1+ea);// mass of air supplied, [kg]\n",
+"mas = ma*mc;// mass of air supplied/h, [kg]\n",
+"mprintf('\n (b) The mass of air supplied per hour is = %f kg\n',mas);\n",
+"\n",
+" \n",
+"// (c)\n",
+"// for one kg coal\n",
+"mCO2 = 11/3*C;// mass of CO2 produced, [kg]\n",
+"mH2O = 9*H2;// mass of H2O produced, [kg]\n",
+"mO2 = mO2*ea;// mass of excess O2 in flue gas, [kg]\n",
+"mN2 = ma*(1-aO2);// mass of N2 in flue gas, [kg]\n",
+"\n",
+"mt = mCO2+mH2O+mO2+mN2;// total mass of gas\n",
+"x1 = mCO2/mt*100;// mass percentage composition of CO2\n",
+"x2 = mH2O/mt*100;// mass percentage composition of H2O\n",
+"x3 = mO2/mt*100;// mass percentage composition of O2\n",
+"x4 = mN2/mt*100;// mass percentage composition of N2\n",
+"\n",
+"mprintf('\n (c) The mass percentage composition of CO2 = %f,\n The mass percentage composition of H2O = %f,\n The mass percentage composition of O2 = %f,\n The mass percentage composition of N2 = %f',x1,x2,x3,x4);\n",
+"\n",
+"// mass of coal taken in part (b) is wrong so answer is not matching\n",
+"\n",
+"// End\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16: volume_average_moleculer_mass_characteristic_gas_constant_and_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.16');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) volume of gas\n",
+"// (b) (1) the average molecular mass of air\n",
+"// (2) the value of R\n",
+"// (3) the mass of 1 m^3 of air at STP\n",
+"\n",
+"// given values\n",
+"n = 1;// moles of gas, [kmol]\n",
+"P = 101.32;// standard pressure, [kN/m^2]\n",
+"T = 273;// gas tempearture, [K]\n",
+"\n",
+"O2 = 21;// percentage volume composition of oxygen in air\n",
+"N2 = 79;// percentage volume composition of nitrogen in air\n",
+"R = 8.3143;// molar gas constant, [kJ/kg K]\n",
+"mO2 = 32;// moleculer mass of O2\n",
+"mN2 = 28;// moleculer mass of N2\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"V = n*R*T/P;// volume of gas, [m^3]\n",
+"mprintf('\n (a) The volume of the gas is = %f m^3\n',V);\n",
+"\n",
+"// (b)\n",
+"//(1)\n",
+"Mav = (O2*mO2+N2*mN2)/(O2+N2);// average moleculer mass of air\n",
+"mprintf('\n (b)(1) The average moleculer mass of air is = %f g/mol\n',Mav);\n",
+"\n",
+"// (2)\n",
+"Rav = R/Mav;// characteristic gas constant, [kJ/kg k]\n",
+"mprintf('\n (2) The value of R is = %f kJ/kg K\n',Rav);\n",
+"\n",
+"// (3)\n",
+"rho = Mav/V;// density of air, [kg/m^3]\n",
+"mprintf('\n (3) The mass of one cubic metre of air at STP is = %f kg/m^3\n',rho);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17: pressures_and_volume.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.17');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the partial pressure of each gas in the vessel\n",
+"// (b) the volume of the vessel\n",
+"// (c) the total pressure in the gas when temperature is raised to228 C\n",
+"\n",
+"// given values\n",
+"MO2 = 8;// mass of O2, [kg]\n",
+"MN2 = 7;// mass of N2, [kg]\n",
+"MCO2 = 22;// mass of CO2, [kg]\n",
+"\n",
+"P = 416;// total pressure in the vessel, [kN/m^2]\n",
+"T = 273+60;// vessel temperature, [K]\n",
+"R = 8.3143;// gas constant, [kJ/kmol K]\n",
+"\n",
+"mO2 = 32;// molculer mass of O2 \n",
+"mN2 = 28;// molculer mass of N2\n",
+"mCO2 = 44;// molculer mass of CO2\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"n1 = MO2/mO2;// moles of O2, [kmol]\n",
+"n2 = MN2/mN2;// moles of N2, [kmol]\n",
+"n3 = MCO2/mCO2;// moles of CO2, [kmol]\n",
+"\n",
+"n = n1+n2+n3;// total moles in the vessel, [kmol]\n",
+"// since,Partial pressure is proportinal, so\n",
+"P1 = n1*P/n;// partial pressure of O2, [kN/m^2]\n",
+"P2 = n2*P/n;// partial pressure of N2, [kN/m^2]\n",
+"P3 = n3*P/n;// partial pressure of CO2, [kN/m^2]\n",
+"\n",
+"mprintf('\n (a)The partial pressure of O2 is = %f kN/m^2,\n, The partial pressure of N2 is = %f kN/m^2,\n The partial pressure of CO2 is = %f kN/m^2,\n',P1,P2,P3);\n",
+"\n",
+"// (b)\n",
+"// assuming ideal gas \n",
+"V = n*R*T/P;// volume of the container, [m^3]\n",
+"mprintf('\n (b) The volume of the container is = %f m^3\n',V);\n",
+"\n",
+"// (c)\n",
+"T2 = 273+228;// raised vessel temperature, [K]\n",
+"// so volume of vessel will constant , P/T=constant\n",
+"P2 = P*T2/T;// new pressure in the vessel , [kn/m62]\n",
+"mprintf('\n (c) The new total pressure in the vessel is = %f kN/m^2\n',P2);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18: mass_and_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.18');\n",
+"\n",
+"// aim : To determine\n",
+"// the actual mass of air supplied/kg coal\n",
+"// the velocity of flue gas\n",
+"\n",
+"// given values\n",
+"mc = 635;// mass of coal burn/h, [kg]\n",
+"ea = .25;// excess air required\n",
+"C = .84;// mass composition of carbon\n",
+"H2 = .04;// mass composition of hydrogen\n",
+"O2 = .05;// mass composition of oxygen\n",
+"ash = 1-(C+H2+O2);// mass composition of ash\n",
+"\n",
+"P1 = 101.3;// pressure, [kJn/m^2]\n",
+"T1 = 273;// temperature, [K]\n",
+"V1 = 22.4;// volume, [m^3]\n",
+"\n",
+"T2 = 273+344;// gas temperature, [K]\n",
+"P2 = 100;// gas pressure, [kN/m^2]\n",
+"A = 1.1;// cross section area, [m^2]\n",
+"aO2 = .23;// composition of O2 in air\n",
+"\n",
+"mCO2 = 44;// moleculer mass of carbon\n",
+"mH2O = 18;// molecular mass of hydrogen\n",
+"mO2 = 32;// moleculer mas of oxygen\n",
+"mN2 = 28;// moleculer mass of nitrogen\n",
+"\n",
+"// solution\n",
+"mtO2 = 8/3*C+8*H2-O2;// theoretical O2 required/kg coal, [kg]\n",
+"msa= mtO2/aO2;// stoichiometric mass of air supplied/kg coal, [kg]\n",
+"mas = msa*(1+ea);// actual mass of air supplied/kg coal, [kg]\n",
+"\n",
+"m1 = 11/3*C;// mass of CO2/kg coal produced, [kg]\n",
+"m2 = 9*H2;// mass of H2/kg coal produced, [kg]\n",
+"m3 = mtO2*ea;// mass of O2/kg coal produced, [kg]\n",
+"m4 = mas*(1-aO2);// mass of N2/kg coal produced, [kg]\n",
+"\n",
+"mt = m1+m2+m3+m4;// total mass, [kg]\n",
+"x1 = m1/mt*100;// %age mass composition of CO2 produced\n",
+"x2 = m2/mt*100;// %age mass composition of H2O produced\n",
+"x3 = m3/mt*100;// %age mass composition of O2 produced\n",
+"x4 = m4/mt*100;// %age mass composition of N2 produced\n",
+"\n",
+"vt = x1/mCO2+x2/mH2O+x3/mO2+x4/mN2;// total volume\n",
+"v1 = x1/mCO2/vt*100;// %age volume composition of CO2\n",
+"v2 = x2/mH2O/vt*100;// %age volume composition of H2O\n",
+"v3 = x3/mO2/vt*100;// %age volume composition of O2\n",
+"v4 = x4/mN2/vt*100;// %age volume composition of N2\n",
+"\n",
+"Mav = (v1*mCO2+v2*mH2O+v3*mO2+v4*mN2)/(v1+v2+v3+v4);// average moleculer mass, [kg/kmol]\n",
+"// since no of moles is constant so PV/T=constant\n",
+"V2 = P1*V1*T2/(P2*T1);//volume, [m^3]\n",
+"\n",
+"mp = mt*mc/3600;// mass of product of combustion/s, [kg]\n",
+"\n",
+"V = V2*mp/Mav;// volume of flowing gas /s,[m^3]\n",
+"\n",
+"v = V/A;// velocity of flue gas, [m/s]\n",
+"mprintf('\n The actual mass of air supplied is = %f kg/kg coal\n',mas);\n",
+"mprintf('\n The velocity of flue gas is = %f m/s\n',v);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19: temperature_and_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.19');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the temperature of the gas after compression\n",
+"// (b) the density of the air-gas mixture\n",
+"\n",
+"// given values\n",
+"CO = 26;// %age volume composition of CO \n",
+"H2 = 16;// %age volume composition of H2\n",
+"CH4 = 7;// %age volume composition of CH4 \n",
+"N2 = 51;// %age volume composition of N2\n",
+"\n",
+"P1 = 103;// gas pressure, [kN/m^2]\n",
+"T1 = 273+21;// gas temperature, [K]\n",
+"rv = 7;// volume ratio\n",
+"\n",
+"aO2 = 21;// %age volume composition of O2 in the air\n",
+"c = 21;// specific heat capacity of diatomic gas, [kJ/kg K]\n",
+"cCH4 = 36;// specific heat capacity of CH4, [kJ/kg K]\n",
+"R = 8.3143;// gas constant, [kJ/kg K]\n",
+"\n",
+"mCO = 28;// moleculer mass of carbon\n",
+"mH2 = 2;// molecular mass of hydrogen\n",
+"mCH4 = 16;// moleculer mas of methane\n",
+"mN2 = 28;// moleculer mass of nitrogen\n",
+"mO2 = 32;// moleculer mass of oxygen\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"Cav = (CO*c+H2*c+CH4*cCH4+N2*c+100*2*c)/(100+200);// heat capacity, [kJ/kg K]\n",
+"\n",
+"Gama = (Cav+R)/Cav;// heat capacity ratio\n",
+"// rv = V1/V2\n",
+"// process is polytropic, so\n",
+"T2 = T1*(rv)^(Gama-1);// final tempearture, [K]\n",
+"mprintf('\n (a) The temperature of the gas after compression is = %f C\n',T2-273);\n",
+"\n",
+"// (b)\n",
+"\n",
+"Mav = (CO*mCO+H2*mH2+CH4*mCH4+N2*mN2+42*mO2+158*mN2)/(100+200)\n",
+"\n",
+"// for 1 kmol of gas\n",
+"V = R*T1/P1;// volume of one kmol of gas, [m^3]\n",
+"// hence\n",
+"rho = Mav/V;// density of gas, [kg/m^3]\n",
+"\n",
+"mprintf('\n (b) The density of air-gas mixture is = %f kg/m^3\n',rho);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: stoichiometric_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clear;\n",
+"clc;\n",
+"disp('Example 8.1');\n",
+"\n",
+"// aim : To determine\n",
+"// the stoichiometric mass of air required to burn 1 kg the fuel \n",
+"\n",
+"// Given values\n",
+"C = .72;// mass fraction of C; [kg/kg]\n",
+"H2 = .20;// mass fraction of H2;, [kg/kg]\n",
+"O2 = .08;// mass fraction of O2, [kg/kg]\n",
+"aO2=.232;// composition of oxygen in air\n",
+"\n",
+"// solution\n",
+"// for 1kg of fuel\n",
+"mO2 = 8/3*C+8*H2-O2;// mass of O2, [kg]\n",
+"\n",
+"// hence stoichiometric mass of O2 required is\n",
+"msO2 = mO2/aO2;// [kg]\n",
+"\n",
+"mprintf('\n The stoichiometric mass of air required to burn 1 kg the fuel should be = %f kg\n',msO2);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.20: stoichiometric_equatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.20');\n",
+"\n",
+"// aim : to determine \n",
+"// stoichiometric equation for combustion of hydrogen\n",
+"\n",
+"// solution\n",
+"// equation with algebric coefficient is\n",
+"// H2+aO2+79/21*aN2=bH2O+79/21*aN2\n",
+"// by equating coefficients\n",
+"b = 1;\n",
+"a = b/2;\n",
+"// so equation becomes\n",
+"// 2 H2+ O2+3.76 N2=2 H2O+3.76 N2\n",
+"disp('The required stoichiometric equation is = ');\n",
+"disp('2 H2+ O2+3.76 N2 = 2 H2O+3.76 N2');\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.22: gravimetric_compositio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.22');\n",
+"\n",
+"// aim : To determine\n",
+"// the percentage gravimetric analysis of the total products of combustion\n",
+"\n",
+"// given values\n",
+"CO = 12;// %age volume composition of CO\n",
+"H2 = 41;// %age volume composition of H2\n",
+"CH4 = 27;// %age volume composition of CH4\n",
+"O2 = 2;// %age volume composition of O2\n",
+"CO2 = 3;// %age volume composition of CO2\n",
+"N2 = 15;// %age volume composition of N2\n",
+"\n",
+"mCO2 = 44;// moleculer mass of CO2,[kg/kmol]\n",
+"mH2O = 18;// moleculer mass of H2O, [kg/kmol]\n",
+"mO2 = 32;// moleculer mass of O2, [kg/kmol]\n",
+"mN2 = 28;// moleculer mass of N2, [kg/kmol]\n",
+" \n",
+"ea = 15;// %age excess air required\n",
+"aO2 = 21;// %age air composition in the air\n",
+"\n",
+"// solution\n",
+"// combustion equation by no. of moles\n",
+"// 12CO + 41H2 + 27CH4 + 2O2 + 3CO2 + 15N2 + aO2+79/21*aN2 = bCO2 + dH2O + eO2 + 15N2 +79/21*aN2\n",
+"// equating C coefficient\n",
+"b = 12+27+3;// [mol]\n",
+"// equatimg H2 coefficient\n",
+"d = 41+2*27;// [mol]\n",
+"// O2 required is 15 % extra,so\n",
+"// e/(e-a)=.15 so e=.13a\n",
+"// equating O2 coefficient\n",
+"// 2+3+a=b+d/2 +e\n",
+"\n",
+"a = (b+d/2-5)/(1-.13);\n",
+"e = .13*a;// [mol]\n",
+"\n",
+"// gravimetric analysis of product\n",
+"v1 = b*mCO2;// gravimetric volume of CO2 \n",
+"v2 = d*mH2O ;// gravimetric volume of H2O \n",
+"v3 = e*mO2;// gravimetric volume of O2\n",
+"v4 = 15*mN2 +79/21*a*mN2;// gravimetric volume of N2 \n",
+"\n",
+"vt = v1+v2+v3+v4;// total\n",
+"x1 = v1/vt*100;// percentage gravimetric of CO2\n",
+"x2 = v2/vt*100;// percentage gravimetric of H2O\n",
+"x3 = v3/vt*100;// percentage gravimetric of O2\n",
+"x4 = v4/vt*100;// percentage gravimetric of N2\n",
+"\n",
+"mprintf('\n Percentage gravimetric composition of CO2 = %f\n ,\n Percentage gravimetric composition of H2O = %f\n\n Percentage gravimetric composition of O2 = %f\n\n Percentage gravimetric composition of N2 = %f\n',x1,x2,x3,x4);\n",
+"\n",
+"// End "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.23: mass_and_volumetric_efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.23');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the actual quantity of air supplied/kg of fuel\n",
+"// (b) the volumetric efficiency of the engine\n",
+"\n",
+"// given values\n",
+"d = 300*10^-3;// bore,[m]\n",
+"L = 460*10^-3;// stroke,[m]\n",
+"N = 200;// engine speed, [rev/min]\n",
+"\n",
+"C = 87;// %age mass composition of Carbon in the fuel\n",
+"H2 = 13;// %age mass composition of H2 in the fuel\n",
+"\n",
+"mc = 6.75;// fuel consumption, [kg/h]\n",
+"\n",
+"CO2 = 7;// %age composition of CO2 by volume\n",
+"O2 = 10.5;// %age composition of O2 by volume\n",
+"N2 = 7;// %age composition of N2 by volume\n",
+"\n",
+"mC = 12;// moleculer mass of CO2,[kg/kmol]\n",
+"mH2 = 2;// moleculer mass of H2, [kg/kmol]\n",
+"mO2 = 32;// moleculer mass of O2, [kg/kmol]\n",
+"mN2 = 28;// moleculer mass of N2, [kg/kmol]\n",
+"\n",
+"T = 273+17;// atmospheric temperature, [K]\n",
+"P = 100;// atmospheric pressure, [kn/m^2]\n",
+"R =.287;// gas constant, [kJ/kg k]\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"// combustion equation by no. of moles\n",
+"// 87/12 C + 13/2 H2 + a O2+79/21*a N2 = b CO2 + d H2O + eO2 + f N2\n",
+"// equating coefficient\n",
+"b = 87/12;// [mol]\n",
+"a = 22.7;// [mol]\n",
+"e = 10.875;// [mol]\n",
+"f = 11.8*b;// [mol]\n",
+"// so fuel side combustion equation is\n",
+"// 87/12 C + 13/2 H2 +22.7 O2 +85.5 N2\n",
+"mair = ( 22.7*mO2 +85.5*mN2)/100;// mass of air/kg fuel, [kg]\n",
+"mprintf('\n (a) The mass of actual air supplied per kg of fuel is = %f kg\n',mair);\n",
+"\n",
+"// (b)\n",
+"m = mair*mc/60;// mass of air/min, [kg]\n",
+"V = m*R*T/P;// volumetric flow of air/min, [m^3]\n",
+"SV = %pi/4*d^2*L*N/2;// swept volume/min, [m^3]\n",
+"\n",
+"VE = V/SV;// volumetric efficiency\n",
+"mprintf('\n (b) The volumetric efficiency of the engine is = %fpercent\n',VE*100);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.24: mass_of_air.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.24');\n",
+"\n",
+"// aim : To determine\n",
+"// the mass of air supplied/kg of fuel burnt\n",
+"\n",
+"// given values\n",
+"// gas composition in the fuel\n",
+"C = 84;// %age mass composition of Carbon in the fuel\n",
+"H2 = 14;// %age mass composition of H2 in the fuel\n",
+"O2f = 2;// %age mass composition of O2 in the fuel\n",
+"\n",
+"// exhaust gas composition\n",
+"CO2 = 8.85;// %age composition of CO2 by volume\n",
+"CO = 1.2// %age composition of CO by volume\n",
+"O2 = 6.8;// %age composition of O2 by volume\n",
+"N2 = 83.15;// %age composition of N2 by volume\n",
+"\n",
+"mC = 12;// moleculer mass of CO2,[kg/kmol]\n",
+"mH2 = 2;// moleculer mass of H2, [kg/kmol]\n",
+"mO2 = 32;// moleculer mass of O2, [kg/kmol]\n",
+"mN2 = 28;// moleculer mass of N2, [kg/kmol]\n",
+"\n",
+"// solution\n",
+"// combustion equation by no. of moles\n",
+"// 84/12 C + 14/2 H2 +2/32 O2 + a O2+79.3/20.7*a N2 = b CO2 + d CO2+ eO2 + f N2 +g H2\n",
+"// equating coefficient and given condition\n",
+"b = 6.16;// [mol]\n",
+"a = 15.14;// [mol]\n",
+"d = .836;// [mol]\n",
+"f = 69.3*d;// [mol]\n",
+"// so fuel side combustion equation is\n",
+"// 84/12 C + 14/2 H2 +2/32 O2 + 15.14 O2 +85.5 N2\n",
+"mair = ( a*mO2 +f*mN2)/100;// mass of air/kg fuel, [kg]\n",
+"mprintf('\n The mass of air supplied per kg of fuel is = %f kg\n',mair);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: stoichiometric_mass_and_composition_of_products.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.3');\n",
+"\n",
+"// aim : To determine \n",
+"// the stoichiometric mass of air\n",
+"// the products of combustion both by mass and as percentage \n",
+"\n",
+"// Given values\n",
+"C = .82;// mass composition C\n",
+"H2 = .12;// mass composition of H2\n",
+"O2 = .02;// mass composition of O2\n",
+"S = .01;// mass composition of S\n",
+"N2 = .03;// mass composition of N2\n",
+"\n",
+" // solution\n",
+"// for 1kg fuel\n",
+"mo2 = 8/3*C+8*H2-O2+S*1;// total mass of O2 required, [kg]\n",
+"sa = mo2/.232;// stoichimetric air, [kg]\n",
+"mprintf('\n The stoichiometric mass of air is = %f kg/kg fuel\n',sa);\n",
+"\n",
+"// for one kg fuel\n",
+"mCO2 = C*11/3;// mass of CO2 produced, [kg]\n",
+"mH2O = H2*9;// mass of H2O produced, [kg]\n",
+"mSO2 = S*2;// mass of SO2 produce, [kg]\n",
+"mN2 = C*8.84+H2*26.5-O2*.768/.232+S*3.3+N2;// mass of N2 produced, [kg]\n",
+"\n",
+"mt = mCO2+mH2O+mSO2+mN2;// total mass of product, [kg]\n",
+"\n",
+"x1 = mCO2/mt*100;// %age mass composition of CO2 produced\n",
+"x2 = mH2O/mt*100;// %age mass composition of H2O produced\n",
+"x3 = mSO2/mt*100;// %age mass composition of SO2 produced\n",
+"x4 = mN2/mt*100;// %age mass composition of N2 produced\n",
+"\n",
+"mprintf('\n CO2 produced = %f kg/kg fuel, percentage composition = %f,\n H2O produced = %f kg/kg fuel, percentage composition = %f,\n SO2 produced = %f kg/kg fuel, percentage composition = %f,\n N2 produced = %f kg/kg fuel, percentage composition = %f',mCO2,x1,mH2O,x2,mSO2,x3,mN2,x4);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: stoichiometric_volume.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.4');\n",
+"\n",
+"// aim : To determine \n",
+"// the stoichiometric volume of air required for complete combution of 1 m^3 of the gas\n",
+"\n",
+"// Given values\n",
+"H2 = .14;// volume fraction of H2\n",
+"CH4 = .02;// volume fraction of CH4\n",
+"CO = .22;// volume fraction of CO\n",
+"CO2 = .05;// volume fraction of CO2\n",
+"O2 = .02;// volume fraction of O2\n",
+"N2 = .55;// volume fraction of N2\n",
+"\n",
+"// solution\n",
+"// for 1 m^3 of fuel\n",
+"Va = .5*H2+2*CH4+.5*CO-O2;// [m^3]\n",
+"\n",
+"// stoichiometric air required is\n",
+"Vsa = Va/.21;// [m^3]\n",
+"\n",
+"mprintf('\n The stoichiometric volume of air required for complete combustion is = %f m^3/m^3 fuel\n',Vsa);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: volume.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.5');\n",
+"\n",
+"// aim : To determine\n",
+"// the volume of the air required \n",
+"\n",
+"// Given values\n",
+"H2 = .45;// volume fraction of H2\n",
+"CO = .40;// volume fraction of CO\n",
+"CH4 = .15;// volume fraction of CH4\n",
+"\n",
+"// solution\n",
+"V = 2.38*(H2+CO)+9.52*CH4;// stoichimetric volume of air, [m^3]\n",
+"\n",
+"mprintf('\n The volume of air required is = %f m^3/m^3 fuel\n',V);\n",
+"\n",
+"// Result in the book is misprinted\n",
+"\n",
+"// End\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: stoichiometric_volume_composition_of_products.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.6');\n",
+"\n",
+"// aim : To determine\n",
+"// the stoichiometric volume of air for the complete combustion\n",
+"// the products of combustion\n",
+"\n",
+"// given values\n",
+"CH4 = .142;// volumetric composition of CH4\n",
+"CO2 = .059;// volumetric composition of CO2\n",
+"CO = .360;// volumetric composition of CO\n",
+"H2 = .405;// volumetric composition of H2\n",
+"O2 = .005;// volumetric composition of O2\n",
+"N2 = .029;// volumetric composition of N2\n",
+"\n",
+"aO2 = .21;// O2 composition into air by volume\n",
+"\n",
+"// solution\n",
+"svO2 = CH4*2+CO*.5+H2*.5-O2;// stroichiometric volume of O2 required, [m^3/m^3 fuel]\n",
+"svair = svO2/aO2;// stroichiometric volume of air required, [m^3/m^3 fuel]\n",
+"mprintf('\n Stoichiometric volume of air required is = %f m^3/m^3 fuel\n',svair);\n",
+"\n",
+"// for one m^3 fuel\n",
+"vN2 = CH4*7.52+CO*1.88+H2*1.88-O2*.79/.21+N2;// volume of N2 produced, [m^3]\n",
+"vCO2 = CH4*1+CO2+CO*1;// volume of CO2 produced, [m^3]\n",
+"vH2O = CH4*2+H2*1;// volume of H2O produced, [m^3]\n",
+"\n",
+"vt = vN2+vCO2+vH2O;// total volume of product, [m^3]\n",
+"\n",
+"x1 = vN2/vt*100;// %age composition of N2 in product,\n",
+"x2 = vCO2/vt*100;// %age composition of CO2 in product\n",
+"x3 = vH2O/vt*100;// %age composition of H2O in product\n",
+"\n",
+"mprintf('\n N2 in products = %fm^3/m^3 fuel, percentage composition = %f,\n CO2 in products = %f m^3/m^3 fuel, percentage composition = %f,\n H2O in products = %fm^3/m^3 fuel, percentage composition = %f',vN2,x1,vCO2,x2,vH2O,x3);\n",
+"\n",
+"// End "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: composition_of_gases.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.7');\n",
+"\n",
+"// aim : To determine\n",
+"// the percentage analysis of the gas by mass\n",
+"\n",
+"// Given values\n",
+"CO2 = 20;// percentage volumetric composition of CO2\n",
+"N2 = 70;// percentage volumetric composition of N2\n",
+"O2 = 10;// percentage volumetric composition of O2\n",
+"\n",
+"mCO2 = 44;// moleculer mas of CO2\n",
+"mN2 = 28;// moleculer mass of N2\n",
+"mO2 = 32;// moleculer mass of O2\n",
+"\n",
+"// solution\n",
+"mgas = CO2*mCO2+N2*mN2+O2*mO2;// moleculer mass of gas \n",
+"m1 = CO2*mCO2/mgas*100;// percentage composition of CO2 by mass \n",
+"m2 = N2*mN2/mgas*100;// percentage composition of N2 by mass \n",
+"m3 = O2*mO2/mgas*100;// percentage composition of O2 by mass \n",
+"\n",
+"mprintf('\n Mass percentage of CO2 is = %f\n\n Mass percentage of N2 is = %f\n\n Mass percentage of O2 is = %f\n',m1,m2,m3 )\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: composition_of_gases.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.8');\n",
+"\n",
+"// aim : To determine\n",
+"// the percentage composition of the gas by volume\n",
+"\n",
+"// given values\n",
+"CO = 30;// %age mass composition of CO\n",
+"N2 = 20;// %age mass composition of N2\n",
+"CH4 = 15;// %age mass composition of CH4\n",
+"H2 = 25;// %age mass composition of H2\n",
+"O2 = 10;// %age mass composition of O2\n",
+"\n",
+"mCO = 28;// molculer mass of CO\n",
+"mN2 = 28;// molculer mass of N2\n",
+"mCH4 = 16;// molculer mass of CH4\n",
+"mH2 = 2;// molculer mass of H2\n",
+"mO2 = 32;// molculer mass of O2\n",
+"\n",
+"// solution\n",
+"vg = CO/mCO+N2/mN2+CH4/mCH4+H2/mH2+O2/mO2;\n",
+"v1 = CO/mCO/vg*100;// %age volume composition of CO\n",
+"v2 = N2/mN2/vg*100;// %age volume composition of N2\n",
+"v3 = CH4/mCH4/vg*100;// %age volume composition of CH4\n",
+"v4 = H2/mH2/vg*100;// %age volume composition of H2\n",
+"v5 = O2/mO2/vg*100;// %age volume composition of O2\n",
+"\n",
+"mprintf('\n The percentage composition of CO by volume is = %f\n,\nThe percentage composition of N2 by volume is = %f\n\nThe percentage composition of CH4 by volume is = %f\n\nThe percentage composition of H2 by volume is = %f\n\nThe percentage composition of O2by volume is=%f',v1,v2,v3,v4,v5);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9: mass_of_air_supplied.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 8.9');\n",
+"\n",
+"// aim : To determine\n",
+"// the mass of air supplied per kilogram of fuel burnt\n",
+"\n",
+"// given values\n",
+"CO2 = 8.85;// volume composition of CO2\n",
+"CO = 1.2;// volume composition of CO\n",
+"O2 = 6.8;// volume composition of O2\n",
+"N2 = 83.15;// volume composition of N2 \n",
+"\n",
+"// composition of gases in the fuel oil\n",
+"C = .84;// mass composition of carbon \n",
+"H = .14;// mass composition of hydrogen\n",
+"o2 = .02;// mass composition of oxygen\n",
+"\n",
+"mC = 12;// moleculer mass of Carbon\n",
+"mCO2 = 44;// molculer mass of CO2\n",
+"mCO = 28;// molculer mass of CO\n",
+"mN2 = 28;// molculer mass of N2\n",
+"mO2 = 32;// molculer mass of O2\n",
+"aO2 = .23;// mass composition of O2 in air\n",
+"\n",
+"// solution\n",
+"ma = (8/3*C+8*H-o2)/aO2;// theoretical mass of air/kg fuel, [kg]\n",
+"\n",
+"mgas = CO2*mCO2+CO*mCO+N2*mN2+O2*mO2;// total mass of gas/kg fuel, [kg]\n",
+"x1 = CO2*mCO2/mgas;// composition of CO2 by mass \n",
+"x2 = CO*mCO/mgas;// composition of CO by mass\n",
+"x3 = O2*mO2/mgas;// composition of O2 by mass \n",
+"x4 = N2*mN2/mgas;// composition of N2 by mass \n",
+"\n",
+"m1 = x1*mC/mCO2+x2*mC/mCO;// mass of C/kg of dry flue gas, [kg]\n",
+"m2 = C;// mass of C/kg fuel, [kg]\n",
+"mf = m2/m1;// mass of dry flue gas/kg fuel, [kg]\n",
+"mo2 = mf*x3;// mass of excess O2/kg fuel, [kg]\n",
+"mair = mo2/aO2;// mass of excess air/kg fuel, [kg]\n",
+"m = ma+mair;// mass of excess air supplied/kg fuel, [kg]\n",
+"\n",
+"mprintf('\n The mass of air supplied per/kg of fuel burnt is = %f kg\n',m);\n",
+" \n",
+"// End"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}