diff options
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/7-Entropy.ipynb')
-rw-r--r-- | Basic_Engineering_Thermodynamics_by_R_Joel/7-Entropy.ipynb | 536 |
1 files changed, 536 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/7-Entropy.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/7-Entropy.ipynb new file mode 100644 index 0000000..77c5dfb --- /dev/null +++ b/Basic_Engineering_Thermodynamics_by_R_Joel/7-Entropy.ipynb @@ -0,0 +1,536 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Entropy" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: specific_entropy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 7.1');\n", +"\n", +"// aim : To determine\n", +"// the specific enthalpy of water\n", +"\n", +"// Given values\n", +"Tf = 273+100;// Temperature,[K]\n", +"\n", +"// solution\n", +"// from steam table\n", +"cpl = 4.187;// [kJ/kg K]\n", +"// using equation [8]\n", +"sf = cpl*log(Tf/273.16);// [kJ/kg*K]\n", +"mprintf('\n The specific entropy of water is = %f kJ/kg K\n',sf);\n", +"\n", +"// using steam table\n", +"sf = 1.307;// [kJ/kg K]\n", +"mprintf('\n From table The accurate value of sf in this case is = %f kJ/kg K\n',sf);\n", +"\n", +"// There is small error in book's final value of sf\n", +"\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: specific_entropy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear;\n", +"clc;\n", +"disp('Example 7.2');\n", +"\n", +"// aim : To determine\n", +"// the specific entropy\n", +"\n", +"// Given values\n", +"P = 2;// pressure,[MN/m^2]\n", +"x = .8;// dryness fraction\n", +"\n", +"// solution\n", +"// from steam table at given pressure\n", +"Tf = 485.4;// [K]\n", +"cpl = 4.187;// [kJ/kg K]\n", +"hfg = 1888.6;// [kJ/kg]\n", +"\n", +"// (a) finding entropy by calculation\n", +"s = cpl*log(Tf/273.16)+x*hfg/Tf;// formula for entropy calculation\n", +"\n", +"mprintf('\n (a) The specific entropy of wet steam is = %f kJ/kg K\n',s);\n", +"\n", +"// (b) calculation of entropy using steam table\n", +"// from steam table at given pressure\n", +"sf = 2.447;// [kJ/kg K]\n", +"sfg = 3.89;// [kJ/kg K]\n", +"// hence\n", +"s = sf+x*sfg;// [kJ/kg K]\n", +"\n", +"mprintf('\n (b) The specific entropy using steam table is = %f kJ/kg K\n',s);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: specific_entropy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 7.3');\n", +"\n", +"// aim : To determine\n", +"// the specific entropy of steam\n", +"\n", +"// Given values\n", +"P = 1.5;//pressure,[MN/m^2]\n", +"T = 273+300;//temperature,[K]\n", +"\n", +"// solution\n", +"\n", +"// (a)\n", +"// from steam table\n", +"cpl = 4.187;// [kJ/kg K]\n", +"Tf = 471.3;// [K]\n", +"hfg = 1946;// [kJ/kg]\n", +"cpv = 2.093;// [kJ/kg K]\n", +"\n", +"// usung equation [2]\n", +"s = cpl*log(Tf/273.15)+hfg/Tf+cpv*log(T/Tf);// [kJ/kg K]\n", +"mprintf('\n (a) The specific entropy of steam is = %f kJ/kg K\n',s);\n", +"\n", +"// (b)\n", +"// from steam tables\n", +"s = 6.919;// [kJ/kg K]\n", +"mprintf('\n (b) The accurate value of specific entropy from steam table is = %f kJ/kg K\n',s);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: dryness_fraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 7.4');\n", +"\n", +"// aim : To determine\n", +"// the dryness fraction of steam\n", +"\n", +"// Given values\n", +"P1 = 2;// initial pressure, [MN/m^2]\n", +"t = 350;// temperature, [C]\n", +"P2 = .28;// final pressure, [MN/m^2]\n", +"\n", +"// solution\n", +"// at 2 MN/m^2 and 350 C,steam is superheated because the saturation temperature is 212.4 C\n", +"// From steam table\n", +"s1 = 6.957;// [kJ/kg K]\n", +"\n", +"// for isentropic process\n", +"s2 = s1;\n", +"// also\n", +"sf2 = 1.647;// [kJ/kg K]\n", +"sfg2 = 5.368;// [kJ/kg K]\n", +"\n", +"// using\n", +"// s2 = sf2+x2*sfg2, where x2 is dryness fraction of steam\n", +"// hence\n", +"x2 = (s2-sf2)/sfg2;\n", +"mprintf('\n The final dryness fraction of steam is x2 = %f\n',x2);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: condition_of_steam_and_change_in_specific_entropy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 7.5');\n", +"\n", +"// aim : To determine\n", +"// the final condition of steam...\n", +"// the change in specific entropy during hyperbolic process\n", +"\n", +"// Given values\n", +"P1 = 2;// pressure, [MN/m^2]\n", +"t = 250;// temperature, [C]\n", +"P2 = .36;// pressure, [MN/m^2]\n", +"P3 = .06;// pressure, [MN/m^2]\n", +"\n", +"// solution\n", +"\n", +"// (a)\n", +"// from steam table\n", +"s1 = 6.545;// [kJ/kg K]\n", +"// at .36 MN/m^2\n", +"sg = 6.930;// [kJ/kg*K]\n", +"\n", +"sf2 = 1.738;// [kJ/kg K]\n", +"sfg2 = 5.192;// [kJ/kg K]\n", +"vg2 = .510;// [m^3]\n", +"\n", +"// so after isentropic expansion, steam is wet\n", +"// hence, s2=sf2+x2*sfg2, where x2 is dryness fraction\n", +"// also\n", +"s2 = s1;\n", +"// so\n", +"x2 = (s2-sf2)/sfg2;\n", +"// and\n", +"v2 = x2*vg2;// [m^3]\n", +"\n", +"// for hyperbolic process\n", +"// P2*v2=P3*v3\n", +"// hence\n", +"v3 = P2*v2/P3;// [m^3]\n", +" \n", +"mprintf('\n (a) From steam table at .06 MN/m^2 steam is superheated and has temperature of 100 C with specific volume is = %f m^3/kg\n',v3);\n", +"\n", +"// (b)\n", +"// at this condition\n", +"s3 = 7.609;// [kJ/kg*K]\n", +"// hence\n", +"change_s23 = s3-sg;// change in specific entropy during the hyperblic process[kJ/kg*K]\n", +"mprintf('\n (b) The change in specific entropy during the hyperbolic process is = %f kJ/kg K\n',change_s23);\n", +"\n", +"// In the book they have taken sg instead of s2 for part (b), so answer is not matching\n", +"\n", +"// End\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: heat_transfer_and_work_done.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear;\n", +"clc;\n", +"disp('Example 7.6');\n", +"\n", +"// aim : To determine the\n", +"// (a) heat transfer during the expansion and\n", +"// (b) work done durind the expansion\n", +"\n", +"// given values\n", +"m = 4.5; // mass of steam,[kg]\n", +"P1 = 3; // initial pressure,[MN/m^2]\n", +"T1 = 300+273; // initial temperature,[K]\n", +"\n", +"P2 = .1; // final pressure,[MN/m^2]\n", +"x2 = .96; // dryness fraction at final stage\n", +"\n", +"// solution\n", +"// for state point 1,using steam table\n", +"s1 = 6.541;// [kJ/kg/K]\n", +"u1 = 2751;// [kJ/kg]\n", +" \n", +" // for state point 2\n", +" sf2 = 1.303;// [kJ/kg/K]\n", +" sfg2 = 6.056;// [kJ/kg/k]\n", +" T2 = 273+99.6;// [K]\n", +" hf2 = 417;// [kJ/kg]\n", +" hfg2 = 2258;// [kJ/kg]\n", +" vg2 = 1.694;// [m^3/kg]\n", +" \n", +" // hence\n", +" s2 = sf2+x2*sfg2;// [kJ/kg/k]\n", +" h2 = hf2+x2*hfg2;// [kJ/kg]\n", +" u2 = h2-P2*x2*vg2*10^3;// [kJ/kg]\n", +" \n", +" // Diagram of example 7.6\n", +" x = [s1 s2];\n", +" y = [T1 T2];\n", +"plot2d(x,y);\n", +" xtitle('Diagram for example 7.6(T vs s)');\n", +" xlabel('Entropy (kJ/kg K)');\n", +" ylabel('Temperature (K)');\n", +"\n", +"x = [s1,s1];\n", +"y = [0,T1];\n", +"plot2d(x,y);\n", +"\n", +"x = [s2,s2];\n", +"y = [0,T2];\n", +"plot2d(x,y);\n", +"\n", +" // (a)\n", +" // Q_rev is area of T-s diagram\n", +" Q_rev = (T1+T2)/2*(s2-s1);// [kJ/kg]\n", +" // so total heat transfer is\n", +" Q_rev = m*Q_rev;// [kJ]\n", +" \n", +" // (b)\n", +" del_u = u2-u1;// change in internal energy, [kJ/kg]\n", +" // using 1st law of thermodynamics\n", +" W = Q_rev-m*del_u;// [kJ]\n", +" \n", +"mprintf('\n (a) The heat transfer during the expansion is = %f kJ (received)\n',Q_rev);\n", +"\n", +" mprintf('\n (b) The work done during the expansion is = %f kJ\n',W);\n", +" \n", +" // End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: change_of_entropy_and_ratio_of_change_of_entropy_and_heat_transfer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear;\n", +"clc;\n", +"disp('Example 7.7');\n", +"\n", +"// aim : To determine the \n", +"// (a) change of entropy\n", +"// (b) The approximate change of entropy obtained by dividing the heat transferred by the gas by the mean absolute temperature during the compression\n", +"\n", +"// Given values\n", +"P1 = 140;// initial pressure,[kN/m^2]\n", +"V1 = .14;// initial volume, [m^3]\n", +"T1 = 273+25;// initial temperature,[K]\n", +" P2 = 1400;// final pressure [kN/m^2]\n", +" n = 1.25; // polytropic index\n", +" cp = 1.041;// [kJ/kg K]\n", +" cv = .743;// [kJ/kg K]\n", +" \n", +" // solution\n", +" // (a)\n", +" R = cp-cv;// [kJ/kg/K]\n", +" // using ideal gas equation \n", +" m = P1*V1/(R*T1);// mass of gas,[kg]\n", +" // since gas is following law P*V^n=constant ,so \n", +" V2 = V1*(P1/P2)^(1/n);// [m^3]\n", +" \n", +" // using eqn [9]\n", +" del_s = m*(cp*log(V2/V1)+cv*log(P2/P1));// [kJ/K]\n", +" mprintf('\n (a) The change of entropy is = %f kJ/K\n',del_s);\n", +" \n", +" // (b)\n", +" W = (P1*V1-P2*V2)/(n-1);// polytropic work,[kJ]\n", +" Gamma = cp/cv;// heat capacity ratio\n", +" Q = (Gamma-n)/(Gamma-1)*W;// heat transferred,[kJ]\n", +" \n", +" // Again using polytropic law\n", +" T2 = T1*(V1/V2)^(n-1);// final temperature, [K]\n", +" T_avg = (T1+T2)/2;// mean absolute temperature, [K]\n", +" \n", +" // so approximate change in entropy is\n", +" del_s = Q/T_avg;// [kJ/K]\n", +" \n", +" mprintf('\n (b) The approximate change of entropy obtained by dividing the heat transferred by the gas by the mean absolute temperature during the compression = %f kJ/K\n',del_s);\n", +" \n", +" // End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: change_of_entropies.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 7.8');\n", +"\n", +"// aim : To determine\n", +"// the change of entropy\n", +"\n", +"// Given values\n", +"m = .3;// [kg]\n", +"P1 = 350;// [kN/m^2]\n", +"T1 = 273+35;// [K]\n", +"P2 = 700;// [kN/m^2]\n", +"V3 = .2289;// [m^3]\n", +"cp = 1.006;// [kJ/kg K]\n", +"cv = .717;// [kJ/kg K]\n", +"\n", +"// solution\n", +"// for constant volume process\n", +"R = cp-cv;// [kJ/kg K]\n", +"// using PV=mRT\n", +"V1 = m*R*T1/P1;// [m^3]\n", +"\n", +"// for constant volume process P/T=constant,so\n", +"T2 = T1*P2/P1;// [K]\n", +"s21 = m*cv*log(P2/P1);// formula for entropy change for constant volume process\n", +"mprintf('\n The change of entropy in constant volume process is = %f kJ/kg K\n',s21);\n", +"\n", +"// 'For the above part result given in the book is wrong\n", +"\n", +"V2 = V1;\n", +"// for constant pressure process\n", +"T3 = T2*V3/V2;// [K]\n", +"s32 = m*cp*log(V3/V2);// [kJ/kg K]\n", +"\n", +"mprintf('\n The change of entropy in constant pressure process is = %f kJ/kg K\n',s32);\n", +"\n", +"// there is misprint in the book's result\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.9: change_of_entropy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 7.9');\n", +"\n", +"// aim : To determine\n", +"// the change of entropy\n", +"\n", +"// Given values\n", +"P1 = 700;// initial pressure, [kN/m^2]\n", +"T1 = 273+150;// Temperature ,[K]\n", +"V1 = .014;// initial volume, [m^3]\n", +"V2 = .084;// final volume, [m^3]\n", +"\n", +"// solution\n", +"// since process is isothermal so\n", +"T2 = T1;\n", +"// and using fig.7.10\n", +"del_s = P1*V1*log(V2/V1)/T1 ;// [kJ/K]\n", +"mprintf('\n The change of entropy is = %f kJ/kg K\n',del_s);\n", +"\n", +"// End" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |