summaryrefslogtreecommitdiff
path: root/Basic_Engineering_Thermodynamics_by_R_Joel/19-Psychrometry.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/19-Psychrometry.ipynb')
-rw-r--r--Basic_Engineering_Thermodynamics_by_R_Joel/19-Psychrometry.ipynb308
1 files changed, 308 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/19-Psychrometry.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/19-Psychrometry.ipynb
new file mode 100644
index 0000000..3e042c9
--- /dev/null
+++ b/Basic_Engineering_Thermodynamics_by_R_Joel/19-Psychrometry.ipynb
@@ -0,0 +1,308 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 19: Psychrometry"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.1: moisture_content.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 19.1');\n",
+"\n",
+"// aim : To compare the moisture content and the true specific volumes of atmosphere air \n",
+"// (a) temperature is 12 C and the air is saturaded\n",
+"// (b) temperature is 31 C and air is .75 saturated\n",
+"\n",
+"// Given values\n",
+"P_atm = 101.4;// atmospheric pressure, [kN/m^2]\n",
+"R = .287;// [kJ/kg K]\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"T = 273+12;// air temperature, [K]\n",
+"// From steam table at 12 C\n",
+"p = 1.4;// [kN/m^2]\n",
+"vg = 93.9;// [m^3/kg]\n",
+"pa = P_atm-p;// partial pressure of the dry air, [kN/m^2]\n",
+"va = R*T/pa;// [m^3/kg]\n",
+"\n",
+"mw = va/vg;// mass of water vapor in the air,[kg]\n",
+"v = va/(1+mw);// specific volume of humid air, [m^3/kg]\n",
+"\n",
+"mprintf('\n (a) The mass of water vapor in the humid air is = %f kg\n',mw);\n",
+"mprintf('\n The specific volume of humid air is = %f m^3/kg\n',v);\n",
+"\n",
+"// (b)\n",
+"x = .75;// dryness fraction\n",
+"T = 273+31;// air temperature, [K]\n",
+"// From steam table\n",
+"p = 4.5;// [kN/m^2]\n",
+"vg = 31.1;// [m^3/kg]\n",
+"pa = P_atm-p;// [kN/m^2]\n",
+"va = R*T/pa;// [m^3/kg]\n",
+"mw1= va/vg;// mass of water vapor in the air, [kg]\n",
+"mw_actual = mw1*x;// actual mass of vapor, [kg]\n",
+"v = va/(1+mw_actual);// true specific volume of humid air,[m^3/kg] \n",
+"\n",
+"mprintf('\n (b) The mass of water vapor in the humid air is = %f kg\n',mw1);\n",
+"mprintf('\n The specific volume of humid air is = %f m^3/kg\n',v);\n",
+"\n",
+"ewv = mw_actual/mw ;\n",
+"mprintf('\n On the warm day the air conteains %f times the mass of water vapor as on the cool day \n',ewv);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.2: partial_pressures_specific_humidity_and_composition.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 19.2');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the partial pressures of the vapor and the dry air\n",
+"// (b) the specific humidity of the mixture\n",
+"// (c) the composition of the mixture\n",
+"\n",
+"// Given values\n",
+"phi = .65;// Relative humidity\n",
+"T = 2733+20;// temperature, [K]\n",
+"p = 100;// barometric pressure, [kN/m^2]\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"// From the steam table at 20 C\n",
+"pg = 2.34;// [kN/m^2]\n",
+"ps = phi*pg;// partial pressure of vapor, [kN/m^2]\n",
+"pa = p-ps;// partial pressure of dry air, [kN/m^2]\n",
+"mprintf('\n (a) The partial pressure of vapor is = %f kN/m^2\n',ps);\n",
+"mprintf('\n The partial pressure of dry air is = %f kN/m^2\n',pa);\n",
+"\n",
+"// (b)\n",
+"// from equation [15]\n",
+"omega = .622*ps/(p-ps);// specific humidity of the mixture\n",
+"mprintf('\n (b) The specific humidity of the mixture is = %f kg/kg dry air\n',omega);\n",
+"\n",
+"// (c)\n",
+"// using eqn [1] from section 19.2\n",
+"y = 1/(1+omega);// composition of the mixture\n",
+"mprintf('\n (c) The composition of the mixture is = %f\n',y);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.3: specific_humidity_dew_point_degree_of_superheat_mass_of_condensate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 19.3');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the specific humidity\n",
+"// (b) the dew point\n",
+"// (c) the degree of superheat of the superheated vapor\n",
+"// (d) the mass of condensate formed per kg of dry air if the moist air is cooled to 12 C\n",
+"\n",
+"// Given values\n",
+"t = 25;// C\n",
+"T = 273+25;// moist air temperature, [K]\n",
+"phi = .6;// relative humidity\n",
+"p = 101.3;// barometric pressure, [kN/m^2]\n",
+"R = .287;// [kJ/kg K]\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"// From steam table at 25 C\n",
+"pg = 3.17;// [kN/m^2]\n",
+"ps = phi*pg;// partial pressure of the vapor, [kN/m^2]\n",
+"omega = .622*ps/(p-ps);// the specific humidity of air\n",
+"\n",
+"mprintf('\n (a) The specific humidity is = %f kg/kg air\n',omega);\n",
+"\n",
+"// (b)\n",
+"// Dew point is saturated temperature at ps is,\n",
+"t_dew = 16+2*(1.092-1.817)/(2.062-1.817);// [C]\n",
+"mprintf('\n (b) The dew point is = %f C\n',t_dew);\n",
+"\n",
+"// (c)\n",
+"Dos = t-t_dew;// degree of superheat, [C]\n",
+"mprintf('\n (c) The degree of superheat is = %f C\n',Dos);\n",
+"\n",
+"// (d)\n",
+"// at 25 C\n",
+"pa = p-ps;// [kN/m^2]\n",
+"va = R*T/pa;// [m^3/kg]\n",
+"// at 16.69 C\n",
+"vg = 73.4-(73.4-65.1)*.69/2;// [m^3/kg]\n",
+"ms1= va/vg; \n",
+"// at 12 C\n",
+"vg = 93.8;// [m^3/kg]\n",
+"ms2 = va/vg;\n",
+"\n",
+"m = ms1-ms2;// mas of condensate\n",
+"mprintf('\n (d) The mass of condensate is = %f kg/kg dry air\n',m);\n",
+"\n",
+"// there is calculation mistake in the book so answer is no matching\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.4: volume_mass_and_heat_transfer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp(' Example 19.4');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the volume of external saturated air\n",
+"// (b) the mass of air\n",
+"// (c) the heat transfer\n",
+"// (d) the heat transfer required by the combind water vapour\n",
+"\n",
+"// given values\n",
+"Vb = 56000;// volume of building, [m^3]\n",
+"T2 = 273+20;// temperature of air in thebuilding, [K]\n",
+"phi = .6;// relative humidity\n",
+"T1 = 8+273;// external air saturated temperature, [K]\n",
+"p0 = 101.3;// atmospheric pressure, [kN/m^2]\n",
+"cp = 2.093;// heat capacity of saturated steam, [kJ/kg K]\n",
+"R = .287;// gas constant, [kJ/kg K]\n",
+"\n",
+"// solution\n",
+"// from steam table at 20 C saturation pressure of steam is,\n",
+"pg = 2.34;// [kN/m^2]\n",
+"\n",
+"// (a)\n",
+"pvap = phi*pg;// partial pressure of vapor, [kN/m^2] \n",
+"P = p0-pvap;// partial pressure of air, [kN/m^2]\n",
+"V = 2*Vb;// air required, [m^3]\n",
+"// at 8 C saturation pressure ia\n",
+"pvap = 1.072;// [kN/m^2]\n",
+"P2 = p0-pvap;// partial pressure of entry at 8 C, [kN/m^2]\n",
+"\n",
+"// using P1*V1/T1=P2*V2/T2;\n",
+"V2 = P*V*T1/(T2*P2);// air required at 8 C, [m^3/h]\n",
+"mprintf('\n (a) The volume of air required is = %f m^3/h\n',V2);\n",
+"\n",
+"// (b)\n",
+"// assuming\n",
+"pg = 1.401;// pressure, [kN/m^2]\n",
+"Tg = 273+12;// [K]\n",
+"vg = 93.8;// [m^3/kg]\n",
+"// at constant pressure\n",
+"v = vg*T2/Tg;// volume[m^3/kg]\n",
+"mv = V/v;// mass of vapor in building at 20 C, [kg/h]\n",
+"// from steam table at 8 C\n",
+"vg2 = 121;// [m^3/kg]\n",
+"mve = V2/vg2;// mass of vapor supplied with saturated entry air, [kg/h]\n",
+"mw = mv-mve;// mass of water added, [kg/h]\n",
+"mprintf('\n (b) The mass of water added is = %f kg/h\n ',mw);\n",
+"\n",
+"// (c)\n",
+"// for perfect gas\n",
+"m = P2*V2/(R*T1);// [kg/h]\n",
+"Cp = .287;// heat capacity, [kJ/kg K]\n",
+"Q = m*Cp*(T2-T1);// heat transfer by dry air,[kJ/h]\n",
+"mprintf('\n (c) The heat transfer required by dry air is = %f MJ/h\n',Q*10^-3);\n",
+"\n",
+"// (d)\n",
+"// from steam table\n",
+"h1 = 2516.2;// specific enthalpy of saturated vapor at 8 C,[kJ/kg]\n",
+"hs = 2523.6;// specific enthalpy of saturated vapor at 20 C, [kJ/kg]\n",
+"h2 = hs+cp*(T2-T1);// specific enthalpy of vapor at 20 c, [kJ/kg]\n",
+"Q1 = mve*(h2-h1);// heat transfer required for vapor, [kJ]\n",
+"\n",
+"// again from steam table\n",
+"hf1 = 33.6;// [kJ/kg]\n",
+"hg3 = 2538.2;// [kJ/kg]\n",
+"Q2 = mw*(hg3-hf1);// heat transfer required for water, [kJ/h]\n",
+"Qt = Q1+Q2;// total heat transfer, [kJ/h]\n",
+"mprintf('\n (d) The heat transferred required for vapor+supply water is = %f MJ/h\n',Qt*10^-3);\n",
+"\n",
+"// there is minor variation in the answer reported in the book\n",
+"\n",
+"// End"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}