summaryrefslogtreecommitdiff
path: root/Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb')
-rw-r--r--Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb182
1 files changed, 182 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb
new file mode 100644
index 0000000..689c0f3
--- /dev/null
+++ b/Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb
@@ -0,0 +1,182 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Refrigeration"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: coefficient_of_performance_mass_flow_and_cooling_water_requirement.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 18.1');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the coefficient of performance\n",
+"// (b) the mass flow of the refrigerant\n",
+"// (c) the cooling water required by the condenser\n",
+"\n",
+"// given values\n",
+"P1 = 462.47;// pressure limit, [kN/m^2]\n",
+"P3 = 1785.90;// pressure limit, [kN/m^2]\n",
+"T2 = 273+59;// entering saturation temperature, [K]\n",
+"T5 = 273+32;// exit temperature of condenser, [K]\n",
+"d = 75*10^-3;// bore, [m]\n",
+"L = d;// stroke, [m]\n",
+"N = 8;// engine speed, [rev/s]\n",
+"VE = .8;// olumetric efficiency\n",
+"cpL = 1.32;// heat capacity of liquid, [kJ/kg K]\n",
+"c = 4.187;// heat capacity of water, [kj/kg K]\n",
+"\n",
+"// solution\n",
+"// from given table\n",
+"// at P1\n",
+"h1 = 231.4;// specific enthalpy, [kJ/kg]\n",
+"s1 = .8614;// specific entropy,[ kJ/kg K\n",
+"v1 = .04573;// specific volume, [m^3/kg]\n",
+"\n",
+"// at P3\n",
+"h3 = 246.4;// specific enthalpy, [kJ/kg]\n",
+"s3 = .8093;// specific entropy,[ kJ/kg K\n",
+"v3 = .04573;// specific volume, [m^3/kg]\n",
+"T3= 273+40;// saturation temperature, [K]\n",
+"h4 = 99.27;// specific enthalpy, [kJ/kg]\n",
+"// (a)\n",
+"s2 = s1;// specific entropy, [kJ/kg k]\n",
+"// using s2=s3+cpv*log(T2/T3)\n",
+"cpv = (s2-s3)/log(T2/T3);// heat capacity, [kj/kg k]\n",
+"\n",
+"// from Fig.18.8\n",
+"T4 = T3;\n",
+"h2 = h3+cpv*(T2-T3);// specific enthalpy, [kJ/kg]\n",
+"h5 = h4-cpL*(T4-T5);// specific enthalpy, [kJ/kg]\n",
+"h6 = h5;\n",
+"COP = (h1-h6)/(h2-h1);// coefficient of performance\n",
+"mprintf('\n (a) The coefficient of performance of the refrigerator is = %f\n',COP);\n",
+"\n",
+"// (b)\n",
+"SV = %pi/4*d^2*L;// swept volume of compressor/rev, [m^3]\n",
+"ESV = SV*VE*N*3600;// effective swept volume/h, [m^3]\n",
+"m = ESV/v1;// mass flow of refrigerant/h,[kg]\n",
+"mprintf('\n (b) The mass flow of refrigerant/h is = %f kg\n',m);\n",
+"\n",
+"// (c)\n",
+"dT = 12;// temperature limit, [C]\n",
+"Q = m*(h2-h5);// heat transfer in condenser/h, [kJ]\n",
+"// using Q=m_dot*c*dT, so\n",
+"m_dot = Q/(c*dT);// mass flow of water required, [kg/h]\n",
+"mprintf('\n (c) The mass flow of water required is = %f kg/h\n',m_dot);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: mass_flow_dryness_fraction_power_and_ratio_of_heat_transfer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 18.2');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the mass flow of R401\n",
+"// (b) the dryness fraction of R401 at the entry to the evaporator\n",
+"// (c) the power of driving motor\n",
+"// (d) the ratio of heat transferred from condenser to the power required to the motor\n",
+"\n",
+"// given values\n",
+"P1 = 411.2;// pressure limit, [kN/m^2]\n",
+"P3 = 1118.9;// pressure limit, [kN/m^2]\n",
+"Q = 100*10^3;// heat transfer from the condenser,[kJ/h]\n",
+"T2 = 273+60;// entering saturation temperature, [K]\n",
+"\n",
+"// given\n",
+"// from given table\n",
+"// at P1\n",
+"h1 = 409.3;// specific enthalpy, [kJ/kg]\n",
+"s1 = 1.7431;// specific entropy,[ kJ/kg K\n",
+"\n",
+"// at P3\n",
+"h3 = 426.4;// specific enthalpy, [kJ/kg]\n",
+"s3 = 1.7192;// specific entropy,[ kJ/kg K\n",
+"T3 = 273+50;// saturation temperature, [K]\n",
+"h4 = 265.5;// specific enthalpy, [kJ/kg]\n",
+"// (a)\n",
+"s2 = s1;// specific entropy, [kJ/kg k]\n",
+"// using s2=s3+cpv*log(T2/T3)\n",
+"cpv = (s2-s3)/log(T2/T3);// heat capacity, [kj/kg k]\n",
+"\n",
+"// from Fig.18.8\n",
+"h2 = h3+cpv*(T2-T3);// specific enthalpy, [kJ/kg]\n",
+"Qc = h2-h4;// heat transfer from condenser, [kJ/kg]\n",
+"mR401 = Q/Qc;// mass flow of R401, [kg]\n",
+" mprintf('\n (a) The mass flow of R401 is = %f kg/h\n',mR401);\n",
+"\n",
+"// (b)\n",
+"hf1 = 219;// specific enthalpy, [kJ/kg]\n",
+"h5 = h4;\n",
+"// using h5=hf1+s5*(h1-hf1),so\n",
+"x5 = (h5-hf1)/(h1-hf1);// dryness fraction\n",
+"mprintf('\n (b) The dryness fraction of R401 at the entry to the evaporator is = %f\n',x5);\n",
+"\n",
+"// (c)\n",
+"P = mR401*(h2-h1)/3600/.7;// power to driving motor, [kW]\n",
+" mprintf('\n (c) The power to driving motor is = %f kW\n',P);\n",
+"\n",
+"// (d)\n",
+"r = Q/3600/P;// ratio\n",
+"mprintf('\n (d) The ratio of heat transferred from condenser to the power required to the motor is = %f : 1\n',r);\n",
+"\n",
+"// End"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}