diff options
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb')
-rw-r--r-- | Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb | 182 |
1 files changed, 182 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb new file mode 100644 index 0000000..689c0f3 --- /dev/null +++ b/Basic_Engineering_Thermodynamics_by_R_Joel/18-Refrigeration.ipynb @@ -0,0 +1,182 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: Refrigeration" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.1: coefficient_of_performance_mass_flow_and_cooling_water_requirement.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 18.1');\n", +"\n", +"// aim : To determine\n", +"// (a) the coefficient of performance\n", +"// (b) the mass flow of the refrigerant\n", +"// (c) the cooling water required by the condenser\n", +"\n", +"// given values\n", +"P1 = 462.47;// pressure limit, [kN/m^2]\n", +"P3 = 1785.90;// pressure limit, [kN/m^2]\n", +"T2 = 273+59;// entering saturation temperature, [K]\n", +"T5 = 273+32;// exit temperature of condenser, [K]\n", +"d = 75*10^-3;// bore, [m]\n", +"L = d;// stroke, [m]\n", +"N = 8;// engine speed, [rev/s]\n", +"VE = .8;// olumetric efficiency\n", +"cpL = 1.32;// heat capacity of liquid, [kJ/kg K]\n", +"c = 4.187;// heat capacity of water, [kj/kg K]\n", +"\n", +"// solution\n", +"// from given table\n", +"// at P1\n", +"h1 = 231.4;// specific enthalpy, [kJ/kg]\n", +"s1 = .8614;// specific entropy,[ kJ/kg K\n", +"v1 = .04573;// specific volume, [m^3/kg]\n", +"\n", +"// at P3\n", +"h3 = 246.4;// specific enthalpy, [kJ/kg]\n", +"s3 = .8093;// specific entropy,[ kJ/kg K\n", +"v3 = .04573;// specific volume, [m^3/kg]\n", +"T3= 273+40;// saturation temperature, [K]\n", +"h4 = 99.27;// specific enthalpy, [kJ/kg]\n", +"// (a)\n", +"s2 = s1;// specific entropy, [kJ/kg k]\n", +"// using s2=s3+cpv*log(T2/T3)\n", +"cpv = (s2-s3)/log(T2/T3);// heat capacity, [kj/kg k]\n", +"\n", +"// from Fig.18.8\n", +"T4 = T3;\n", +"h2 = h3+cpv*(T2-T3);// specific enthalpy, [kJ/kg]\n", +"h5 = h4-cpL*(T4-T5);// specific enthalpy, [kJ/kg]\n", +"h6 = h5;\n", +"COP = (h1-h6)/(h2-h1);// coefficient of performance\n", +"mprintf('\n (a) The coefficient of performance of the refrigerator is = %f\n',COP);\n", +"\n", +"// (b)\n", +"SV = %pi/4*d^2*L;// swept volume of compressor/rev, [m^3]\n", +"ESV = SV*VE*N*3600;// effective swept volume/h, [m^3]\n", +"m = ESV/v1;// mass flow of refrigerant/h,[kg]\n", +"mprintf('\n (b) The mass flow of refrigerant/h is = %f kg\n',m);\n", +"\n", +"// (c)\n", +"dT = 12;// temperature limit, [C]\n", +"Q = m*(h2-h5);// heat transfer in condenser/h, [kJ]\n", +"// using Q=m_dot*c*dT, so\n", +"m_dot = Q/(c*dT);// mass flow of water required, [kg/h]\n", +"mprintf('\n (c) The mass flow of water required is = %f kg/h\n',m_dot);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2: mass_flow_dryness_fraction_power_and_ratio_of_heat_transfer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 18.2');\n", +"\n", +"// aim : To determine\n", +"// (a) the mass flow of R401\n", +"// (b) the dryness fraction of R401 at the entry to the evaporator\n", +"// (c) the power of driving motor\n", +"// (d) the ratio of heat transferred from condenser to the power required to the motor\n", +"\n", +"// given values\n", +"P1 = 411.2;// pressure limit, [kN/m^2]\n", +"P3 = 1118.9;// pressure limit, [kN/m^2]\n", +"Q = 100*10^3;// heat transfer from the condenser,[kJ/h]\n", +"T2 = 273+60;// entering saturation temperature, [K]\n", +"\n", +"// given\n", +"// from given table\n", +"// at P1\n", +"h1 = 409.3;// specific enthalpy, [kJ/kg]\n", +"s1 = 1.7431;// specific entropy,[ kJ/kg K\n", +"\n", +"// at P3\n", +"h3 = 426.4;// specific enthalpy, [kJ/kg]\n", +"s3 = 1.7192;// specific entropy,[ kJ/kg K\n", +"T3 = 273+50;// saturation temperature, [K]\n", +"h4 = 265.5;// specific enthalpy, [kJ/kg]\n", +"// (a)\n", +"s2 = s1;// specific entropy, [kJ/kg k]\n", +"// using s2=s3+cpv*log(T2/T3)\n", +"cpv = (s2-s3)/log(T2/T3);// heat capacity, [kj/kg k]\n", +"\n", +"// from Fig.18.8\n", +"h2 = h3+cpv*(T2-T3);// specific enthalpy, [kJ/kg]\n", +"Qc = h2-h4;// heat transfer from condenser, [kJ/kg]\n", +"mR401 = Q/Qc;// mass flow of R401, [kg]\n", +" mprintf('\n (a) The mass flow of R401 is = %f kg/h\n',mR401);\n", +"\n", +"// (b)\n", +"hf1 = 219;// specific enthalpy, [kJ/kg]\n", +"h5 = h4;\n", +"// using h5=hf1+s5*(h1-hf1),so\n", +"x5 = (h5-hf1)/(h1-hf1);// dryness fraction\n", +"mprintf('\n (b) The dryness fraction of R401 at the entry to the evaporator is = %f\n',x5);\n", +"\n", +"// (c)\n", +"P = mR401*(h2-h1)/3600/.7;// power to driving motor, [kW]\n", +" mprintf('\n (c) The power to driving motor is = %f kW\n',P);\n", +"\n", +"// (d)\n", +"r = Q/3600/P;// ratio\n", +"mprintf('\n (d) The ratio of heat transferred from condenser to the power required to the motor is = %f : 1\n',r);\n", +"\n", +"// End" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |