summaryrefslogtreecommitdiff
path: root/Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb')
-rw-r--r--Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb284
1 files changed, 284 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb
new file mode 100644
index 0000000..f74dd9d
--- /dev/null
+++ b/Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb
@@ -0,0 +1,284 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Steam turbines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: power_developed_and_kinetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 13.1');\n",
+"\n",
+"// aim : To determine \n",
+"// the power developed for a steam flow of 1 kg/s at the blades and the kinetic energy of the steam finally leaving the wheel\n",
+"\n",
+"// Given values\n",
+"alfa = 20;// blade angle, [degree]\n",
+"Cai = 375;// steam exit velocity in the nozzle,[m/s]\n",
+"U = 165;// blade speed, [m/s]\n",
+"loss = .15;// loss of velocity due to friction\n",
+"\n",
+"// solution\n",
+"// using Fig13.12,\n",
+"Cvw = 320;// change in velocity of whirl, [m/s]\n",
+"cae = 132.5;// absolute velocity at exit, [m/s]\n",
+"Pds = U*Cvw*10^-3;// Power developed for steam flow of 1 kg/s, [kW]\n",
+"Kes = cae^2/2*10^-3;// Kinetic energy change of steam, [kW/kg] \n",
+"\n",
+"mprintf('\n The power developed for a steam flow of 1 kg/s is = %f kW\n',Pds)\n",
+"mprintf('\n The energy of steam finally leaving the wheel is = %f kW/kg\n',Kes);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: angle_of_blade_work_done_diagram_efficiency_and_end_thrust.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 13.2');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the entry angle of the blades\n",
+"// (b) the work done per kilogram of steam per second\n",
+"// (c) the diagram efficiency\n",
+"// (d) the end-thrust per kilogram of steam per second\n",
+"\n",
+"// given values\n",
+"Cai = 600;// steam velocity, [m/s]\n",
+"sia = 25;// steam inlet angle with blade, [degree]\n",
+"U = 255;// mean blade speed, [m/s]\n",
+"sea = 30;// steam exit angle with blade,[degree] \n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"// using Fig.13.13(diagram for example 13.2)\n",
+"eab = 41.5;// entry angle of blades, [degree]\n",
+"mprintf('\n (a) The angle of blades is = %f degree\n',eab);\n",
+"\n",
+"// (b)\n",
+"Cwi_plus_Cwe = 590;// velocity of whirl, [m/s]\n",
+"W = U*(Cwi_plus_Cwe);// work done on the blade,[W/kg]\n",
+"mprintf('\n (b) The work done on the blade is = %f kW/kg\n',W*10^-3);\n",
+"\n",
+"// (c)\n",
+"De = 2*U*(Cwi_plus_Cwe)/Cai^2;// diagram efficiency \n",
+"mprintf('\n (c) The diagram efficiency is = %f percent\n',De*100);\n",
+"\n",
+"// (d)\n",
+"// again from the diagram\n",
+"Cfe_minus_Cfi = -90;// change invelocity of flow, [m/s]\n",
+"Eth = Cfe_minus_Cfi;// end-thrust, [N/kg s]\n",
+"mprintf('\n (d) The End-thrust is = %f N/kg',Eth);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: power_output_and_diagram_efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 13.3');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the power output of the turbine\n",
+"// (b) the diagram efficiency\n",
+"\n",
+"// given values\n",
+"U = 150;// mean blade speed, [m/s]\n",
+"Cai1 = 675;// nozzle speed, [m/s]\n",
+"na = 20;// nozzle angle, [degree]\n",
+"m_dot = 4.5;// steam flow rate, [kg/s]\n",
+"\n",
+"// solution\n",
+"// from Fig. 13.15(diagram 13.3)\n",
+"Cw1 = 915;// [m/s]\n",
+"Cw2 = 280;// [m/s]\n",
+"\n",
+"// (a)\n",
+"P = m_dot*U*(Cw1+Cw2);// power of turbine,[W]\n",
+"mprintf('\n (a) The power of turbine is = %f kW\n',P*10^-3);\n",
+"\n",
+"// (b)\n",
+"De = 2*U*(Cw1+Cw2)/Cai1^2;// diagram efficiency\n",
+"mprintf('\n (b) The diagram efficiency is = %f percent\n',De*100);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: power_output_specific_enthalpy_drop_and_increase_in_relative_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 13.4');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the power output of the stage\n",
+"// (b) the specific enthalpy drop in the stage\n",
+"// (c) the percentage increase in relative velocity in the moving blades due to expansion in the bladse\n",
+"\n",
+"// given values\n",
+"N = 50;// speed, [m/s]\n",
+"d = 1;// blade ring diameter, [m]\n",
+"nai = 50;// nozzle inlet angle, [degree]\n",
+"nae = 30;// nozzle exit angle, [degree]\n",
+"m_dot = 600000;// steam flow rate, [kg/h]\n",
+"se = .85;// stage efficiency\n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"U = %pi*d*N;// mean blade speed, [m/s]\n",
+"// from Fig. 13.17(diagram 13.4)\n",
+"Cwi_plus_Cwe = 444;// change in whirl speed, [m/s]\n",
+"P = m_dot*U*Cwi_plus_Cwe/3600;// power output of the stage, [W]\n",
+"mprintf('\n (a) The power output of the stage is = %f MW\n',P*10^-6);\n",
+"\n",
+"// (b)\n",
+"h = U*Cwi_plus_Cwe/se;// specific enthalpy,[J/kg]\n",
+"mprintf('\n (b) The specific enthalpy drop in the stage is = %f kJ/kg\n ',h*10^-3);\n",
+"\n",
+"// (c)\n",
+"// again from diagram\n",
+"Cri = 224;// [m/s]\n",
+"Cre = 341;// [m/s]\n",
+"Iir = (Cre-Cri)/Cri;// increase in relative velocity\n",
+"mprintf('\n (c) The increase in relative velocity is = %f percent\n',Iir*100);\n",
+"\n",
+"// End"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: blade_height_power_developed_and_specific_enthalpy_drop.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"disp('Example 13.5');\n",
+"\n",
+"// aim : To determine\n",
+"// (a) the blade height of the stage\n",
+"// (b) the power developed in the stage\n",
+"// (c) the specific enthalpy drop at the stage\n",
+"\n",
+"// given values\n",
+"U = 60;// mean blade speed, [m/s]\n",
+"P = 350;// steam pressure, [kN/m^2]\n",
+"T = 175;// steam temperature, [C]\n",
+"nai = 30;// stage inlet angle, [degree]\n",
+"nae = 20;// stage exit angle, [degree] \n",
+"\n",
+"// solution\n",
+"// (a)\n",
+"m_dot = 13.5;// steam flow rate, [kg/s]\n",
+"// at given T and P\n",
+"v = .589;// specific volume, [m^3/kg]\n",
+"// given H=d/10, so\n",
+"H = sqrt(m_dot*v/(%pi*10*60));// blade height, [m]\n",
+"mprintf('\n (a) The blade height at this stage is = %f mm\n',H*10^3);\n",
+"\n",
+"// (b)\n",
+"Cwi_plus_Cwe = 270;// change in whirl speed, [m/s]\n",
+"P = m_dot*U*(Cwi_plus_Cwe);// power developed, [W]\n",
+"mprintf('\n (b) The power developed is = %f kW\n',P*10^-3);\n",
+"\n",
+"// (c)\n",
+"s = .85;// stage efficiency\n",
+"h = U*Cwi_plus_Cwe/s;// specific enthalpy,[J/kg]\n",
+"mprintf('\n (a) The specific enthalpy drop in the stage is = %f kJ/kg',h*10^-3);\n",
+"\n",
+"// End"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}