diff options
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb')
-rw-r--r-- | Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb new file mode 100644 index 0000000..f74dd9d --- /dev/null +++ b/Basic_Engineering_Thermodynamics_by_R_Joel/13-Steam_turbines.ipynb @@ -0,0 +1,284 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Steam turbines" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: power_developed_and_kinetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 13.1');\n", +"\n", +"// aim : To determine \n", +"// the power developed for a steam flow of 1 kg/s at the blades and the kinetic energy of the steam finally leaving the wheel\n", +"\n", +"// Given values\n", +"alfa = 20;// blade angle, [degree]\n", +"Cai = 375;// steam exit velocity in the nozzle,[m/s]\n", +"U = 165;// blade speed, [m/s]\n", +"loss = .15;// loss of velocity due to friction\n", +"\n", +"// solution\n", +"// using Fig13.12,\n", +"Cvw = 320;// change in velocity of whirl, [m/s]\n", +"cae = 132.5;// absolute velocity at exit, [m/s]\n", +"Pds = U*Cvw*10^-3;// Power developed for steam flow of 1 kg/s, [kW]\n", +"Kes = cae^2/2*10^-3;// Kinetic energy change of steam, [kW/kg] \n", +"\n", +"mprintf('\n The power developed for a steam flow of 1 kg/s is = %f kW\n',Pds)\n", +"mprintf('\n The energy of steam finally leaving the wheel is = %f kW/kg\n',Kes);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: angle_of_blade_work_done_diagram_efficiency_and_end_thrust.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 13.2');\n", +"\n", +"// aim : To determine\n", +"// (a) the entry angle of the blades\n", +"// (b) the work done per kilogram of steam per second\n", +"// (c) the diagram efficiency\n", +"// (d) the end-thrust per kilogram of steam per second\n", +"\n", +"// given values\n", +"Cai = 600;// steam velocity, [m/s]\n", +"sia = 25;// steam inlet angle with blade, [degree]\n", +"U = 255;// mean blade speed, [m/s]\n", +"sea = 30;// steam exit angle with blade,[degree] \n", +"\n", +"// solution\n", +"// (a)\n", +"// using Fig.13.13(diagram for example 13.2)\n", +"eab = 41.5;// entry angle of blades, [degree]\n", +"mprintf('\n (a) The angle of blades is = %f degree\n',eab);\n", +"\n", +"// (b)\n", +"Cwi_plus_Cwe = 590;// velocity of whirl, [m/s]\n", +"W = U*(Cwi_plus_Cwe);// work done on the blade,[W/kg]\n", +"mprintf('\n (b) The work done on the blade is = %f kW/kg\n',W*10^-3);\n", +"\n", +"// (c)\n", +"De = 2*U*(Cwi_plus_Cwe)/Cai^2;// diagram efficiency \n", +"mprintf('\n (c) The diagram efficiency is = %f percent\n',De*100);\n", +"\n", +"// (d)\n", +"// again from the diagram\n", +"Cfe_minus_Cfi = -90;// change invelocity of flow, [m/s]\n", +"Eth = Cfe_minus_Cfi;// end-thrust, [N/kg s]\n", +"mprintf('\n (d) The End-thrust is = %f N/kg',Eth);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: power_output_and_diagram_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 13.3');\n", +"\n", +"// aim : To determine\n", +"// (a) the power output of the turbine\n", +"// (b) the diagram efficiency\n", +"\n", +"// given values\n", +"U = 150;// mean blade speed, [m/s]\n", +"Cai1 = 675;// nozzle speed, [m/s]\n", +"na = 20;// nozzle angle, [degree]\n", +"m_dot = 4.5;// steam flow rate, [kg/s]\n", +"\n", +"// solution\n", +"// from Fig. 13.15(diagram 13.3)\n", +"Cw1 = 915;// [m/s]\n", +"Cw2 = 280;// [m/s]\n", +"\n", +"// (a)\n", +"P = m_dot*U*(Cw1+Cw2);// power of turbine,[W]\n", +"mprintf('\n (a) The power of turbine is = %f kW\n',P*10^-3);\n", +"\n", +"// (b)\n", +"De = 2*U*(Cw1+Cw2)/Cai1^2;// diagram efficiency\n", +"mprintf('\n (b) The diagram efficiency is = %f percent\n',De*100);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: power_output_specific_enthalpy_drop_and_increase_in_relative_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 13.4');\n", +"\n", +"// aim : To determine\n", +"// (a) the power output of the stage\n", +"// (b) the specific enthalpy drop in the stage\n", +"// (c) the percentage increase in relative velocity in the moving blades due to expansion in the bladse\n", +"\n", +"// given values\n", +"N = 50;// speed, [m/s]\n", +"d = 1;// blade ring diameter, [m]\n", +"nai = 50;// nozzle inlet angle, [degree]\n", +"nae = 30;// nozzle exit angle, [degree]\n", +"m_dot = 600000;// steam flow rate, [kg/h]\n", +"se = .85;// stage efficiency\n", +"\n", +"// solution\n", +"// (a)\n", +"U = %pi*d*N;// mean blade speed, [m/s]\n", +"// from Fig. 13.17(diagram 13.4)\n", +"Cwi_plus_Cwe = 444;// change in whirl speed, [m/s]\n", +"P = m_dot*U*Cwi_plus_Cwe/3600;// power output of the stage, [W]\n", +"mprintf('\n (a) The power output of the stage is = %f MW\n',P*10^-6);\n", +"\n", +"// (b)\n", +"h = U*Cwi_plus_Cwe/se;// specific enthalpy,[J/kg]\n", +"mprintf('\n (b) The specific enthalpy drop in the stage is = %f kJ/kg\n ',h*10^-3);\n", +"\n", +"// (c)\n", +"// again from diagram\n", +"Cri = 224;// [m/s]\n", +"Cre = 341;// [m/s]\n", +"Iir = (Cre-Cri)/Cri;// increase in relative velocity\n", +"mprintf('\n (c) The increase in relative velocity is = %f percent\n',Iir*100);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: blade_height_power_developed_and_specific_enthalpy_drop.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 13.5');\n", +"\n", +"// aim : To determine\n", +"// (a) the blade height of the stage\n", +"// (b) the power developed in the stage\n", +"// (c) the specific enthalpy drop at the stage\n", +"\n", +"// given values\n", +"U = 60;// mean blade speed, [m/s]\n", +"P = 350;// steam pressure, [kN/m^2]\n", +"T = 175;// steam temperature, [C]\n", +"nai = 30;// stage inlet angle, [degree]\n", +"nae = 20;// stage exit angle, [degree] \n", +"\n", +"// solution\n", +"// (a)\n", +"m_dot = 13.5;// steam flow rate, [kg/s]\n", +"// at given T and P\n", +"v = .589;// specific volume, [m^3/kg]\n", +"// given H=d/10, so\n", +"H = sqrt(m_dot*v/(%pi*10*60));// blade height, [m]\n", +"mprintf('\n (a) The blade height at this stage is = %f mm\n',H*10^3);\n", +"\n", +"// (b)\n", +"Cwi_plus_Cwe = 270;// change in whirl speed, [m/s]\n", +"P = m_dot*U*(Cwi_plus_Cwe);// power developed, [W]\n", +"mprintf('\n (b) The power developed is = %f kW\n',P*10^-3);\n", +"\n", +"// (c)\n", +"s = .85;// stage efficiency\n", +"h = U*Cwi_plus_Cwe/s;// specific enthalpy,[J/kg]\n", +"mprintf('\n (a) The specific enthalpy drop in the stage is = %f kJ/kg',h*10^-3);\n", +"\n", +"// End" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |