diff options
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/11-The_steam_engine.ipynb')
-rw-r--r-- | Basic_Engineering_Thermodynamics_by_R_Joel/11-The_steam_engine.ipynb | 586 |
1 files changed, 586 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/11-The_steam_engine.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/11-The_steam_engine.ipynb new file mode 100644 index 0000000..703f063 --- /dev/null +++ b/Basic_Engineering_Thermodynamics_by_R_Joel/11-The_steam_engine.ipynb @@ -0,0 +1,586 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: The steam engine" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: bore_stroke_and_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.1')\n", +"\n", +"// aim : To determine the \n", +"// (a) bore of the cylinder\n", +"// (b) piston stroke\n", +"// (c) speed of the engine\n", +"\n", +"// Given values\n", +"P_req = 60;// power required to develop, [kW]\n", +"P = 1.25;// boiler pressure, [MN/m^2]\n", +"Pb = .13;// back pressure, [MN/m^2]\n", +"cut_off = .3;// [stroke]\n", +"k = .82;// diagram factor\n", +"n = .78;// mechanical efficiency\n", +"LN = 3;// mean piston speed, [m/s]\n", +"\n", +"// solution\n", +"// (a)\n", +"r = 1/cut_off;// expansion ratio\n", +"Pm = P/r*(1+log(r))-Pb;// mean effective pressure, [MN/m^2]\n", +"P_ind = P_req/n;// Actual indicated power developed, [kW]\n", +"P_the = P_ind/k;// Theoretical indicated power developed, [kW]\n", +"\n", +"// using indicated_power=Pm*LN*A\n", +"// Hence\n", +"A = P_the/(Pm*LN)*10^-3;// piston area,[m^2]\n", +"d = sqrt(4*A/%pi)*10^3;// bore ,[mm]\n", +"mprintf('\n (a) The bore of the cylinder is = %f mm\n',d);\n", +"\n", +"// (b)\n", +"// given that stroke is 1.25 times bore\n", +"L = 1.25*d;// [mm]\n", +"mprintf('\n (b) The piston stroke is = %f mm\n',L);\n", +"\n", +"// (c)\n", +"// LN=mean piston speed, where L is stroke in meter and N is 2*rev/s,(since engine is double_acting)\n", +"// hence\n", +"rev_per_sec = LN/(2*L*10^-3);// [rev/s]\n", +"\n", +"rev_per_min = rev_per_sec*60;// [rev/min]\n", +"mprintf('\n (c) The speed of the engine is = %f rev/min\n',rev_per_min);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: diameter_and_stroke.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.2')\n", +"\n", +"// aim : To determine the \n", +"// (a) the diameter of the cylinder\n", +"// (b) piston stroke\n", +"// (c) actual steam consumption and indicated thermal efficiency\n", +"\n", +"// Given values\n", +"P = 900;// inlet pressure, [kN/m^2]\n", +"Pb = 140;// exhaust pressure, [kN/m^2]\n", +"cut_off =.4;// [stroke]\n", +"k = .8;// diagram factor\n", +"rs = 1.2;// stroke to bore ratio\n", +"N = 4;// engine speed, [rev/s]\n", +"ip = 22.5;// power output from the engine, [kW]\n", +"\n", +"// solution\n", +"// (a)\n", +"r = 1/cut_off;// expansion ratio\n", +"Pm = P/r*(1+log(r))-Pb;// mean effective pressure, [kN/m^2]\n", +"Pm = Pm*k;// actual mean effective pressure, [kN/m^2]\n", +"\n", +"// using ip=Pm*L*A*N\n", +"// and L=r*d; where L is stroke and d is bore\n", +"d = (ip/(Pm*rs*%pi/4*2*N))^(1/3);// diameter of the cylinder, [m]\n", +"\n", +"mprintf('\n (a) The diameter of the cylinder is = %f mm\n',d*1000);\n", +"\n", +"// (b)\n", +"L = rs*d;// stroke, [m]\n", +"mprintf('\n (b) The piston stroke is = %f mm\n',L*1000);\n", +"\n", +"// (c)\n", +"SV = %pi/4*d^2*L;// stroke volume, [m^3]\n", +"V = SV*cut_off*2*240*60;// volume of steam consumed per hour, [m^3]\n", +"v = .2148;// specific volume at 900 kN/m^2, [m^3/kg]\n", +"SC = V/v;// steam consumed/h, [kg]\n", +"ASC = 1.5*SC;// actual steam consumption/h, [kg]\n", +"mprintf('\n (c) The actual steam consumption/h is = %f kg\n',ASC);\n", +"\n", +"m_dot = ASC/3600;// steam consumption,[kg/s] \n", +"// from steam table\n", +"hg = 2772.1;// specific enthalpy of inlet steam, [kJ/kg]\n", +"hfe = 458.4;// specific liquid enthalpy at exhaust pressure, [kJ/kg]\n", +"\n", +"ITE = ip/(m_dot*(hg-hfe));// indicated thermal efficiency\n", +"mprintf('\n The indicated thermal efficiency is = %f percent\n',ITE*100);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: diagram_factor_and_indicated_thermal_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.3');\n", +"\n", +"// aim : To determine\n", +"// (a) the diagram factor\n", +"// (b) the indicated thermal efficiency of the engine\n", +"\n", +"// given values\n", +"d = 250*10^-3;// cylinder diameter, [m]\n", +"L = 375*10^-3;// length of stroke, [m]\n", +"P = 1000;// steam pressure , [kPa]\n", +"x = .96;// dryness fraction of steam\n", +"Pb = 55;// exhaust pressure, [kPa]\n", +"r = 6;// expansion ratio\n", +"ip = 45;// indicated power developed, [kW]\n", +"N = 3.5;// speed of engine, [rev/s]\n", +"m = 460;// steam consumption, [kg/h]\n", +"\n", +"// solution\n", +"// (a)\n", +"Pm = P/r*(1+log(r))-Pb;// [kN/m^3]\n", +"A = %pi*(d)^2/4;// area, [m^2]\n", +"tip = Pm*L*A*N*2;// theoretical indicated power, [kW]\n", +"k = ip/tip;// diagram factor\n", +"mprintf('\n (a) The diagram factor is = %f\n',k);\n", +"\n", +"// (b)\n", +"// from steam table at 1 MN/m^2\n", +"hf = 762.6;// [kJ/kg]\n", +"hfg = 2013.6;// [kJ/kg]\n", +"// so \n", +"h1 = hf+x*hfg;// specific enthalpy of steam at 1MN/m^2, [kJ/kg]\n", +"// minimum specific enthalpy in engine at 55 kPa \n", +"hf = 350.6;// [kJ/kg]\n", +"// maximum energy available in engine is\n", +"h = h1-hf;// [kJ/kg]\n", +"ITE = ip/(m*h/3600)*100;// indicated thermal efficiency\n", +"mprintf('\n (b) The indicated thermal efficiency is = %f percent\n ',ITE);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: steam_consumption.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.4');\n", +"\n", +"// aim : To determine\n", +"// steam consumption\n", +"\n", +"// given values\n", +"P1 = 11;// power, [kW]\n", +"m1 = 276;// steam use/h when developing power P1,[kW]\n", +"ip = 8;// indicated power output, [kW]\n", +"B = 45;// steam used/h at no load, [kg]\n", +"\n", +"// solution\n", +"// using graph of Fig.11.9 \n", +"A = (m1-B)/P1;// slop of line, [kg/kWh]\n", +"W = A*ip+B;// output, [kg/h]\n", +"mprintf('\n The steam consumption is = %f kg/h\n ',W);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.5: pressure_power_output_and_steam_consumption.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.5');\n", +"\n", +"// aim : To determine\n", +"// (a) the intermediate pressure\n", +"// (b) the indicated power output\n", +"// (c) the steam consumption of the engine\n", +"\n", +"// given values\n", +"P1 = 1400;// initial pressure, [kN/m^2]\n", +"x = .9;// dryness fraction\n", +"P5 = 35;// exhaust pressure\n", +"k = .8;// diagram factor of low-pressure cylindaer\n", +"L = 350*10^-3;// stroke of both the cylinder, [m]\n", +"dhp = 200*10^-3;// diameter of high pressure cylinder, [m]\n", +"dlp = 300*10^-3;// diameter of low-pressure cylinder, [m]\n", +"N = 300;// engine speed, [rev/min]\n", +"\n", +"// solution\n", +"// taking reference Fig.11.13\n", +"Ahp = %pi/4*dhp^2;// area of high-pressure cylinder, [m^2]\n", +"Alp = %pi/4*dlp^2;// area of low-pressure cylinder, [m^2]\n", +"// for equal initial piston loads\n", +"// (P1-P7)Ahp=(P7-P5)Alp\n", +"deff('[x]=f(P7)','x=(P1-P7)*Ahp-(P7-P5)*Alp');\n", +"P7 = fsolve(0,f);// intermediate pressure, [kN/m^2]\n", +"mprintf('\n (a) The intermediate pressure is = %f kN/m^2\n ',P7);\n", +"\n", +"// (b)\n", +"V6 = Ahp*L;// volume of high-pressure cylinder, [m^3]\n", +"P2 = P1;\n", +"P6 = P7;\n", +"// using P2*V2=P6*V6\n", +"V2 = P6*V6/P2; // [m^3]\n", +"V1 = Alp*L;// volume of low-pressure cylinder, [m^3]\n", +"R = V1/V2;// expansion ratio\n", +"Pm = P1/R*(1+log(R))-P5;// effective pressure of low-pressure cylinder, [kn/m^2]\n", +"Pm = k*Pm;// actual effective pressure, [kN/m^2]\n", +"ip = Pm*L*Alp*N*2/60;// indicated power, [kW]\n", +"mprintf('\n (b) The indicated power is = %f kW\n',ip);\n", +"\n", +"// (c) \n", +"COV = V1/ R;// cut-off volume in high-pressure cylinder, [m^3]\n", +"V = COV*N*2*60;// volume of steam admitted/h\n", +"// from steam table\n", +"vg = .1407;// [m^3/kg]\n", +"AV = x*vg;// specific volume of admission steam, [m^3/kg]\n", +"m = V/AV;// steam consumption, [kg/h]\n", +"mprintf('\n (c) The steam consumption of the engine is = %f kg/h\n',m);\n", +"\n", +"// End " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: power_output_diameter_and_intermediate_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.6');\n", +"\n", +"// aim : To determine\n", +"// (a) the indicated power output\n", +"// (b) the diameter of high-pressure cylinder of the engine\n", +"// (c) the intermediate pressure\n", +"\n", +"// given values\n", +"P = 1100;// initial pressure, [kN/m^2]\n", +"Pb = 28;// exhaust pressure\n", +"k = .82;// diagram factor of low-pressure cylindaer\n", +"L = 600*10^-3;// stroke of both the cylinder, [m]\n", +"dlp = 600*10^-3;// diameter of low-pressure cylinder, [m]\n", +"N = 4;// engine speed, [rev/s]\n", +"R = 8;// expansion ratio\n", +"\n", +"// solution\n", +"// taking reference Fig.11.13\n", +"// (a)\n", +"Pm = P/R*(1+log(R))-Pb;// effective pressure of low-pressure cylinder, [kn/m^2]\n", +"Pm = k*Pm;// actual effective pressure, [kN/m^2]\n", +"Alp = %pi/4*dlp^2;// area of low-pressure cylinder, [m^2]\n", +"ip = Pm*L*Alp*N*2;// indicated power, [kW]\n", +"mprintf('\n (a) The indicated power is = %f kW\n',ip);\n", +"\n", +"// (b)\n", +"// work done by both cylinder is same as area of diagram\n", +"w = Pm*Alp*L;// [kJ]\n", +"W = w/2;// work done/cylinder, [kJ]\n", +"V2 = Alp*L/8;// volume, [m63]\n", +"P2 = P;// [kN/m^2]\n", +"// using area A1267=P2*V2*log(V6/V2)=W\n", +"V6 = V2*exp(W/(P2*V2));// intermediate volume, [m^3]\n", +"// using Ahp*L=%pi/4*dhp^2*L=V6\n", +"dhp = sqrt(V6*4/L/%pi);// diameter of high-pressure cylinder, [m]\n", +"mprintf('\n (b) The diameter of high-pressure cylinder is = %f mm\n',dhp*1000);\n", +"\n", +"// (c)\n", +"// using P2*V2=P6*V6\n", +"P6 = P2*V2/V6; // intermediate pressure, [kN/m^2]\n", +"mprintf('\n (c) The intermediate opressure is = %f kN/m^2\n',P6);\n", +"\n", +"// End " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.7: speed_and_diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.7');\n", +"\n", +"// aim : To determine\n", +"// (a) The speed of the engine\n", +"// (b) the diameter of the high pressure cylinder\n", +"\n", +"// given values\n", +"ip = 230;// indicated power, [kW]\n", +"P = 1400;// admission pressure, [kN/m^2]\n", +"Pb = 35;// exhaust pressure, [kN/m^2]\n", +"R = 12.5;// expansion ratio\n", +"d1 = 400*10^-3;// diameter of low pressure cylinder, [m]\n", +"L = 500*10^-3;// stroke of both the cylinder, [m]\n", +"k = .78;// diagram factor\n", +"rv = 2.5;// expansion ratio of high pressure cylinder\n", +"\n", +"// solution\n", +"// (a)\n", +"Pm = P/R*(1+log(R))-Pb;// mean effective pressure in low pressure cylinder, [kN/m^2]\n", +"ipt = ip/k;// theoretical indicated power, [kw]\n", +"// using ip=Pm*L*A*N\n", +"A = %pi/4*d1^2;// area , [m^2]\n", +"N = ipt/(Pm*L*A*2);// speed, [rev/s]\n", +"mprintf('\n (a) The engine speed is = %f rev/s\n',N);\n", +"\n", +"// (b)\n", +"Vl = A*L;// volume of low pressure cylinder, [m^3]\n", +"COV = Vl/R;// cutt off volume of hp cylinder, [m^3]\n", +"V = COV*rv;// total volume, [m^3]\n", +"\n", +"// V = %pi/4*d^2*L, so\n", +"d = sqrt(4*V/%pi/L);// diameter of high pressure cylinder, [m]\n", +"mprintf('\n (b) The diameter of the high pressure cylinder is = %f mm\n',d*1000);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.8: mean_effective_pressures_diagram_factor_and_indicated_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.8');\n", +"\n", +"// aim : To determine\n", +"// (a) the actual and hypothetical mean effective pressures referred to the low-pressure cylinder\n", +"// (b) the overall diagram factor\n", +"// (c) the indicated power \n", +"\n", +"// given values\n", +"P = 1100;// steam supply pressure, [kN/m^2]\n", +"Pb = 32;// back pressure, [kN/m^2]\n", +"d1 = 300*10^-3;// cylinder1 diameter, [m]\n", +"d2 = 600*10^-3;// cylinder2 diameter, [m]\n", +"L = 400*10^-3;// common stroke of both cylinder, [m]\n", +"\n", +"A1 = 12.5;// average area of indicated diagram for HP, [cm^2]\n", +"A2 = 11.4;// average area of indicated diagram for LP, [cm^2]\n", +"\n", +"P1 = 270;// indicator calibration, [kN/m^2/ cm]\n", +"P2 = 80;// spring calibration, [kN/m^2/ cm]\n", +"N = 2.7;// engine speed, [rev/s]\n", +"l = .75;// length of both diagram, [m]\n", +"\n", +"// solution\n", +"// (a)\n", +"// for HP cylinder\n", +"Pmh = P1*A1/7.5;// [kN/m^2]\n", +"F = Pmh*%pi/4*d1^2;// force on HP, [kN]\n", +"PmH = Pmh*(d1/d2)^2;// pressure referred to LP cylinder, [kN/m^2]\n", +"PmL = P2*A2/7.5;// pressure for LP cylinder, [kN/m^2]\n", +"PmA = PmH+PmL;// actual effective pressure referred to LP cylinder, [kN/m^2]\n", +"\n", +"Ah = %pi/4*d1^2;// area of HP cylinder, [m^2]\n", +"Vh = Ah*L;// volume of HP cylinder, [m^3]\n", +"CVh = Vh/3;// cut-off volume of HP cylinder, [m^3]\n", +"Al = %pi/4*d2^2;// area of LP cylinder, [m^2]\n", +"Vl = Al*L;// volume of LP cylinder, [m^3]\n", +"\n", +"R = Vl/CVh;// expansion ratio\n", +"Pm = P/R*(1+log(R))-Pb;// hypothetical mean effective pressure referred to LP cylinder, [kN/m^2]\n", +"\n", +"mprintf('\n (a) The actual mean effective pressure referred to LP cylinder is = %f kN/m^2\n',PmA);\n", +"mprintf('\n The hypothetical mean effective pressure referred to LP cylinder is = %f kN/m^2\n',Pm);\n", +"\n", +"// (a)\n", +"ko = PmA/Pm;// overall diagram factor\n", +"mprintf('\n (b) The overall diagram factor is = %f\n',ko);\n", +"\n", +"// (c) \n", +"ip = PmA*L*Al*N*2;// indicated power, [kW]\n", +"mprintf('\n (c) The indicated power is = %f kW\n',ip);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.9: EX11_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 11.9');\n", +"\n", +"// aim : To determine\n", +"// (a) the actual and hypothetical mean effective pressures referred to the low-pressure cylinder\n", +"// (b) the overall diagram factor\n", +"// (c) the pecentage of the total indicated power developed in each cylinder\n", +"\n", +"// given values\n", +"P = 1400;// steam supply pressure, [kN/m^2]\n", +"Pb = 20;// back pressure, [kN/m^2]\n", +"Chp = .6;// cut-off in HP cylinder, [stroke]\n", +"dh = 300*10^-3;// HP diameter, [m]\n", +"di = 500*10^-3;// IP diameter, [m]\n", +"dl = 900*10^-3;// LP diameter, [m]\n", +"\n", +"Pm1 = 590;// actual pressure of HP cylinder, [kN/m^2]\n", +"Pm2 = 214;// actual pressure of IP cylinder, [kN/m^2]\n", +"Pm3 = 88;// actual pressure of LP cylinder, [kN/m^2]\n", +"\n", +"// solution\n", +"// (a)\n", +"// for HP cylinder\n", +"PmH = Pm1*(dh/dl)^2;// PmH referred to LP cylinder, [kN/m^2]\n", +"// for IP cylinder\n", +"PmI = Pm2*(di/dl)^2;// PmI referred to LP cylinder, [kN/m^2]\n", +"PmA = PmH+PmI+Pm3;// actual mean effective pressure referred to LP cylinder, [kN/m^2]\n", +"\n", +"R = dl^2/(dh^2*Chp);// expansion ratio\n", +"Pm = P/R*(1+log(R))-Pb;// hypothetical mean effective pressure referred to LP cylinder, [kN/m^2]\n", +"\n", +"mprintf('\n (a) The actual mean effective pressure referred to LP cylinder is = %f kN/m^2\n',PmA);\n", +"mprintf('\n The hypothetical mean effective pressure referred to LP cylinder is = %f kN/m^2\n',Pm);\n", +"\n", +"// (b)\n", +"ko = PmA/Pm;// overall diagram factor\n", +"mprintf('\n (b) The overall diagram factor is = %f\n',ko);\n", +"\n", +"// (c)\n", +"HP = PmH/PmA*100;// %age of indicated power developed in HP\n", +"IP = PmI/PmA*100; // %age of indicated power developed in IP\n", +"LP = Pm3/PmA*100; // %age of indicated power developed in LP\n", +"mprintf('\n (c) The pecentage of the total indicated power developed in HP cylinder is = %f percent\n',HP);\n", +"mprintf('\n The pecentage of the total indicated power developed in IP cylinder is = %f percent\n',IP);\n", +"mprintf('\n The pecentage of the total indicated power developed in LP cylinder is = %f percent\n',LP);\n", +"\n", +"// End" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |